Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 62-68    https://doi.org/10.11896/j.issn.1005-023X.2017.021.009
  材料综述 |
载银纳米颗粒多响应性复合水凝胶研究进展*
孙舒鑫1, 2, 焦体峰1, 2, 张乐欣1, 2
1 燕山大学环境与化学工程学院,秦皇岛 066004;
2 河北省应用化学重点实验室,秦皇岛 066004
Progress in Multi-responsive Composite Hydrogels Loaded with Silver Nanoparticles
SUN Shuxin1,2, JIAO Tifeng1,2, ZHANG Lexin1,2
1 School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004;
2 Hebei Key Laboratory of Applied Chemistry, Qinhuangdao 066004
下载:  全 文 ( PDF ) ( 2552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来载银纳米颗粒多响应性复合水凝胶得到人们的广泛关注。该复合体系通过结合银纳米颗粒与水凝胶,不仅可以利用水凝胶的光学和电学特性,同时也表现出了对温度、pH、介质离子强度的轻微变化以及对某些生物物质浓度变化的快速响应。对近年来载银纳米颗粒多响应性复合水凝胶的性能和分类方法的研究进展进行了详述,介绍了该复合水凝胶在催化领域、生物医学领域、纳米技术和环境污染物质降解等方面的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙舒鑫
焦体峰
张乐欣
关键词:  银纳米颗粒  多响应性复合水凝胶  温度敏感性  催化作用    
Abstract: Multi-responsive hydrogels loaded with silver nanoparticles have gained much attention in recent years. Such composite system combines responsive behavior of hydrogels with optical and electrical properties of silver nanoparticles. This composite system shows quick response to slight variation of temperature, pH and ionic strength of medium and concentration of certain biolo-gical substances. This article reviews the recent research progress of classification and properties of multi-responsive hydrogels loaded with silver nanoparticles, and applications of silver nanoparticles-loaded responsive hydrogels in catalysis, biomedical field, nanotechnology and degradation of environmental pollutants.
Key words:  silver nanoparticle    multi-responsive hydrogel    temperature sensitivity    catalysis
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  O648.11  
基金资助: 国家自然科学基金(21473153);河北省青年拔尖人才支持计划;中国博士后科学基金(2015M580214);秦皇岛市科学技术研究与发展计划(201701B004)
通讯作者:  焦体峰,男,教授,博士研究生导师,主要从事功能纳米材料与超分子组装的研究 E-mail:tfjiao@ysu.edu.cn   
作者简介:  孙舒鑫:女,1993年生,硕士研究生,主要从事纳米复合材料的研究
引用本文:    
孙舒鑫, 焦体峰, 张乐欣. 载银纳米颗粒多响应性复合水凝胶研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 62-68.
SUN Shuxin, JIAO Tifeng, ZHANG Lexin. Progress in Multi-responsive Composite Hydrogels Loaded with Silver Nanoparticles. Materials Reports, 2017, 31(21): 62-68.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.009  或          http://www.mater-rep.com/CN/Y2017/V31/I21/62
1 Kratz K, Hellweg T, Eimer W. Structural changes in PNIPAM microgel particles as seen by SANS, DLS and EM techniques[J]. Polymer, 2001,42(15):6631.
2 Karg M, Hellweg T. New “smart” poly (NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterisation[J]. Curr Opin Colloid Interface Sci, 2009,14(6):438.
3 Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M. Multifunctiona-lity in metal@microgel colloidal nanocomposites[J]. J Mater Chem A, 2013,1(1):20.
4 Karg M. Multifunctional inorganic/organic hybrid microgels[J]. Colloid Polym Sci, 2012, 290(8): 673.
5 Naeem H, Farooqi Z H, Shah L A, et al. Synthesis and characte-rization of P(NIPAM-AA-AAm) microgels for tuning of optical properties of silver nanoparticles[J]. J Polym Res, 2012,19(9):1.
6 Hoare T, Pelton R. Highly pH and temperature responsive microgels functionalized with vinylacetic acid[J]. Macromolecules, 2004,37(7):2544.
7 Farooqi Z H, Khan H U, Shah S M, et al. Stability of poly (N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration[J]. Arab J Chem, 2013, 7(10): 3031.
8 Vinogradov S V. Colloidal microgels in drug delivery applications[J]. Curr Pharm Des, 2006, 12(36): 4703.
9 Thorne J B, Vine G J, Snowden M J. Microgel applications and commercial considerations[J]. Colloid Polym Sci, 2011, 289(5-6): 625.
10Ballauff M, Lu Y. “Smart” nanoparticles: Preparation, characte-rization and applications[J]. Polymer, 2007,48(7):1815.
11Wu W, Zhou S. Hybrid micro-/nanogels for optical sensing and intracellular imaging[J]. Nano Rev, 2010,40(2):5730.
12Das M, Zhang H, Kumacheva E. Microgels: Old materials with new applications[J]. Annu Rev Mater Res, 2006,36:117.
13Hoare T, Pelton R. Engineering glucose swelling responses in poly (N-isopropylacrylamide)-based microgels[J]. Macromolecules, 2007,40(3):670.
14Lapeyre V, Gosse I, Chevreux S, et al. Monodispersed glucose-responsive microgels operating at physiological salinity[J]. Biomacromolecules, 2006, 7(12): 3356.
15Suzuki D, Kawaguchi H. Hybrid microgels with reversibly changeable multiple brilliant color[J]. Langmuir, 2006,22(8):3818.
16Welsch N, Ballauff M, Lu Y. Microgels as nanoreactors: Applications in catalysis[M]∥Chemical design of responsive microgels. Berlin Heidelberg:Springer, 2010: 129.
17Liu Y, Liu X, Yang J, et al. Investigation of Ag nanoparticles loa-ding temperature responsive hybrid microgels and their temperature controlled catalytic activity[J]. Colloids Surf A, 2012,393:105.
18Liu X, Wang X, Zha L, et al. Temperature-and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels[J]. J Mater Chem C, 2014, 2(35): 7326.
19Zhang J, Xu S, Kumacheva E. Photogeneration of fluorescent silver nanoclusters in polymer microgels[J]. Adv Mater, 2005,17(19):2336.
20Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks[J]. Angew Chem Int Ed, 2006,45(5):813.
21Khan A, El A M, Alrokayan S, et al. Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles[J]. Colloids Surf A, 2011, 377(1): 356.
22Chen Q D, Shen X H, Gao H C. One-step synthesis of silver-poly (4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics[J]. Colloids Surf A, 2006, 275(1): 45.
23Farooqi Z H, Khan S R, Hussain T, et al. Effect of crosslinker feed content on catalytic activity of silver nanoparticles fabricated in multiresponsive microgels[J]. Korean J Chem Eng, 2014,31(9):1674.
24Liu X Y, Zhang C, Yang J M, et al. Silver nanoparticles loading pH responsive hybrid microgels: pH tunable plasmonic coupling demonstrated by surface enhanced Raman scattering[J]. RSC Adv, 2013, 3(10): 3384.
25Khan S R, Farooqi Z H, Ajmal M, et al. Synthesis, characterization, and silver nanoparticles fabrication in Nisopropylacrylamide-based polymer microgels for rapid degradation of p-nitrophenol[J]. J Dispers Sci Technol, 2013,34(10):1324.
26Dong Y, Ma Y, Zhai T Y, et al. Silver nanoparticles stabilized by thermoresponsive microgel particles: Synthesis and evidence of an electron donor-acceptor effect[J]. Macromol Rapid Commun, 2007,28(24):2339.
27Farooqi Z H, Khan S R, Begum R, et al. Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels[J]. Turk J Chem, 2015,39:96.
28Farooqi Z H, Siddiq M. Temperature-responsive poly (N-isopropylacrylamide-acrylamide-phenylboronic acid) microgels for stabilization of silver nanoparticles[J]. J Disper Sci Technol, 2015,36(3):423.
29Xu S, Zhang J, Paquet C, et al. From hybrid microgels to photonic crystals[J]. Adv Funct Mater, 2003,13(6):468.
30Zhang J T, Wei G, Keller T F, et al. Responsive hybrid polymeric/metallic nanoparticles for catalytic applications[J]. Macromol Mater Eng, 2010,295(11):1049.
31Zhang J, Ma N, Tang F, et al. pH-and glucose-responsive core-shell hybrid nanoparticles with controllable metal-enhanced fluorescence effects[J]. ACS Appl Mater Inter, 2012,4(3):1747.
32Wu W, Zhou T, Berliner A, et al. Smart core-shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery[J]. Chem Mater, 2010,22(6):1966.
33Wu W, Shen J, Li Y, et al. Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels[J]. Biomaterials, 2012,33(29):7115.
34Wu W, Mitra N, Yan E C, et al. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH[J]. ACS Nano, 2010,4(8):4831.
35Xie L, Chen M, Wu L M. Fabrication and properties of hollow poly (N-isopropylacrylamide)-Ag nanocomposite spheres[J]. J Polym Sci Pol Chem, 2009,47(19):4919.
36Karg M, Lu Y, Carbo-Argibay E, et al. Multiresponsive hybrid colloids based on gold nanorods and poly (NIPAM-co-allylacetic acid) microgels: Temperature-and pH-tunable plasmon resonance[J]. Langmuir, 2009,25(5):3163.
37Karg M, Hellweg T. Smart inorganic/organic hybrid microgels: Synthesis and characte-risation[J]. J Mater Chem, 2009,19(46):8714.
38Lu Y, Mei Y, Ballauff M, et al. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles[J]. J Phys Chem B, 2006, 110(9): 3930.
39Agrawal G, Schurings M P, Pich A, et al. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process[J]. J Mater Chem A, 2013, 1(42): 13244.
40Ajmal M, Farooqi Z H, Siddiq M. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity[J]. Korean J Chem Eng, 2013,30(11):2030.
41Palioura D, Armes S, Anastasiadis S, et al. Metal nanocrystals incorporated within pH-responsive microgel particles[J]. Langmuir, 2007,23(10):5761.
42Wu W T, Zhou T, Zhou S Q. Tunable photoluminescence of Ag nanocrystals in multiple-sensitive hybrid microgels[J]. Chem Mater, 2009,21(13):2851.
43Pelton R. Temperature-sensitive aqueous microgels[J]. Adv Colloid Interface Sci, 2000,85(1):1.
44Pich A, Karak A, Lu Y, et al. Preparation of hybrid microgels functionalized by silver nanoparticles[J].Macromol Rapid Commun, 2006,27(5):344.
45Kratz K, Hellweg T, Eimer W. Influence of charge density on the swelling of colloidal poly (N-isopropylacrylamide-coacrylic acid) microgels[J]. Colloids Surf A, 2000, 170(2): 137.
46Zhang C X, Li C, Chen Y Y, et al. Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers[J]. J Mater Sci, 2014,49(20):6872.
47Shah L A, Farooqi Z H, Naeem H, et al. Synthesis and characte-rization of poly (N-isopropylacrylamide) hybrid microgels with diffe-rent cross-linker contents[J]. J Chem Soc Pakistan, 2013,35(6):1522.
48Ye T, Jiang X M, Xu W T, et al. Tailoring the glucose-responsive volume phase transition behaviour of Ag@ poly (phenylboronic acid) hybrid microgels: From monotonous swelling to monotonous shrin-king upon adding glucose at physiological pH[J]. Polym Chem, 2014,5(7):2352.
49Murali Mohan Y, Lee K, Premkumar T, et al. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications[J]. Polymer, 2007,48(1):158.
50Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. J Nanopart Res, 2010,12(5):1531.
51Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005,16(10):2346.
52Das M, Sanson N, Kumacheva E. Zwitterionic poly (betaine-n-isopropylacrylamide) microgels: Properties and applications[J]. Chem Mater, 2008,20(22):7157.
53Murthy P K, Murali Mohan Y, Varaprasad K, et al. First successful design of semi-IPN hydrogel-silver nanocomposites: A facile approach for antibacterial application[J]. J Colloid Interface Sci, 2008, 318(2): 217.
54Balogh L, Swanson D R, Tomalia D A, et al. Dendrimer-silver complexes and nanocomposites as antimicrobial agents[J]. Nano Lett, 2001,1(1):18.
55Hantzschel N, Hund R D, Hund H, et al. Hybrid microgels with antibacterial properties[J]. Macromol Biosci, 2009,9(5):444.
56Liu F, Wang X, Ye K Q, et al. Layer-by-layer as-sembled microgel films containing silver nanoparticles as antimicrobial coatings on plastics[J]. Chem J Chin Universities, 2011,32(4):990.
57Li B, Smilgies D, Price A, et al. Poly (Nisopropylacrylamide) surfactant-functionalized responsive silver nanoparticles and superlattices[J]. ACS Nano, 2014, 8: 4799.
58Rajesh R, Venkatesan R. Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly (amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics[J]. J Mol Catal A—Chem, 2012,359:88.
59Lu Y, Mei Y, Schrinner M, et al. In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation[J]. J Phys Chem C, 2007,111(21):7676.
60Liu J, Wang J, Zhu Z, et al. Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes[J]. AIChE J, 2014,60(6):1977.
61Jiao T, Zhao H, Zhou J X, et al. Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments[J]. ACS Sustain Chem Eng, 2015, 3(12): 3130.
62Lu Y, Yu M, Drechsler M, et al. Ag nanocomposite particles: Preparation, characterization and application[J]. Macromol Symp, 2007,254:97.
63Thomas V, Namdeo M, Bajpai S, et al. Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach[J]. J Macromol Sci A, 2007,45(1):107.
64Tang F, Ma N, Tong L Y, et al. Control of metalenhanced fluorescence with pH- and thermoresponsive hybrid microgels[J]. Langmuir, 2011,28(1):883.
65Mei Y, Lu, Y, Polzer F, et al. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels[J]. Chem Mater, 2007, 19(5):1062.
66Hou C L, Ma K, Jiao T F, et al. Preparation and dye removal capacities of porous silver nanoparticle-containing composite hydrogels via poly (acrylic acid) and silver ions[J]. RSC Adv, 2016, 6(112): 110799.
67Wu W T, Shen J, Gai Z, et al. Multifunctional core-shell nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery[J]. Biomaterials, 2011,32:9876.
[1] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed