Progress in Multi-responsive Composite Hydrogels Loaded with Silver Nanoparticles
SUN Shuxin1,2, JIAO Tifeng1,2, ZHANG Lexin1,2
1 School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004; 2 Hebei Key Laboratory of Applied Chemistry, Qinhuangdao 066004
Abstract: Multi-responsive hydrogels loaded with silver nanoparticles have gained much attention in recent years. Such composite system combines responsive behavior of hydrogels with optical and electrical properties of silver nanoparticles. This composite system shows quick response to slight variation of temperature, pH and ionic strength of medium and concentration of certain biolo-gical substances. This article reviews the recent research progress of classification and properties of multi-responsive hydrogels loaded with silver nanoparticles, and applications of silver nanoparticles-loaded responsive hydrogels in catalysis, biomedical field, nanotechnology and degradation of environmental pollutants.
1 Kratz K, Hellweg T, Eimer W. Structural changes in PNIPAM microgel particles as seen by SANS, DLS and EM techniques[J]. Polymer, 2001,42(15):6631. 2 Karg M, Hellweg T. New “smart” poly (NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterisation[J]. Curr Opin Colloid Interface Sci, 2009,14(6):438. 3 Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M. Multifunctiona-lity in metal@microgel colloidal nanocomposites[J]. J Mater Chem A, 2013,1(1):20. 4 Karg M. Multifunctional inorganic/organic hybrid microgels[J]. Colloid Polym Sci, 2012, 290(8): 673. 5 Naeem H, Farooqi Z H, Shah L A, et al. Synthesis and characte-rization of P(NIPAM-AA-AAm) microgels for tuning of optical properties of silver nanoparticles[J]. J Polym Res, 2012,19(9):1. 6 Hoare T, Pelton R. Highly pH and temperature responsive microgels functionalized with vinylacetic acid[J]. Macromolecules, 2004,37(7):2544. 7 Farooqi Z H, Khan H U, Shah S M, et al. Stability of poly (N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration[J]. Arab J Chem, 2013, 7(10): 3031. 8 Vinogradov S V. Colloidal microgels in drug delivery applications[J]. Curr Pharm Des, 2006, 12(36): 4703. 9 Thorne J B, Vine G J, Snowden M J. Microgel applications and commercial considerations[J]. Colloid Polym Sci, 2011, 289(5-6): 625. 10Ballauff M, Lu Y. “Smart” nanoparticles: Preparation, characte-rization and applications[J]. Polymer, 2007,48(7):1815. 11Wu W, Zhou S. Hybrid micro-/nanogels for optical sensing and intracellular imaging[J]. Nano Rev, 2010,40(2):5730. 12Das M, Zhang H, Kumacheva E. Microgels: Old materials with new applications[J]. Annu Rev Mater Res, 2006,36:117. 13Hoare T, Pelton R. Engineering glucose swelling responses in poly (N-isopropylacrylamide)-based microgels[J]. Macromolecules, 2007,40(3):670. 14Lapeyre V, Gosse I, Chevreux S, et al. Monodispersed glucose-responsive microgels operating at physiological salinity[J]. Biomacromolecules, 2006, 7(12): 3356. 15Suzuki D, Kawaguchi H. Hybrid microgels with reversibly changeable multiple brilliant color[J]. Langmuir, 2006,22(8):3818. 16Welsch N, Ballauff M, Lu Y. Microgels as nanoreactors: Applications in catalysis[M]∥Chemical design of responsive microgels. Berlin Heidelberg:Springer, 2010: 129. 17Liu Y, Liu X, Yang J, et al. Investigation of Ag nanoparticles loa-ding temperature responsive hybrid microgels and their temperature controlled catalytic activity[J]. Colloids Surf A, 2012,393:105. 18Liu X, Wang X, Zha L, et al. Temperature-and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels[J]. J Mater Chem C, 2014, 2(35): 7326. 19Zhang J, Xu S, Kumacheva E. Photogeneration of fluorescent silver nanoclusters in polymer microgels[J]. Adv Mater, 2005,17(19):2336. 20Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks[J]. Angew Chem Int Ed, 2006,45(5):813. 21Khan A, El A M, Alrokayan S, et al. Microwave-assisted synthesis of silver nanoparticles using poly-N-isopropylacrylamide/acrylic acid microgel particles[J]. Colloids Surf A, 2011, 377(1): 356. 22Chen Q D, Shen X H, Gao H C. One-step synthesis of silver-poly (4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerisation. The photoluminescence characteristics[J]. Colloids Surf A, 2006, 275(1): 45. 23Farooqi Z H, Khan S R, Hussain T, et al. Effect of crosslinker feed content on catalytic activity of silver nanoparticles fabricated in multiresponsive microgels[J]. Korean J Chem Eng, 2014,31(9):1674. 24Liu X Y, Zhang C, Yang J M, et al. Silver nanoparticles loading pH responsive hybrid microgels: pH tunable plasmonic coupling demonstrated by surface enhanced Raman scattering[J]. RSC Adv, 2013, 3(10): 3384. 25Khan S R, Farooqi Z H, Ajmal M, et al. Synthesis, characterization, and silver nanoparticles fabrication in Nisopropylacrylamide-based polymer microgels for rapid degradation of p-nitrophenol[J]. J Dispers Sci Technol, 2013,34(10):1324. 26Dong Y, Ma Y, Zhai T Y, et al. Silver nanoparticles stabilized by thermoresponsive microgel particles: Synthesis and evidence of an electron donor-acceptor effect[J]. Macromol Rapid Commun, 2007,28(24):2339. 27Farooqi Z H, Khan S R, Begum R, et al. Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels[J]. Turk J Chem, 2015,39:96. 28Farooqi Z H, Siddiq M. Temperature-responsive poly (N-isopropylacrylamide-acrylamide-phenylboronic acid) microgels for stabilization of silver nanoparticles[J]. J Disper Sci Technol, 2015,36(3):423. 29Xu S, Zhang J, Paquet C, et al. From hybrid microgels to photonic crystals[J]. Adv Funct Mater, 2003,13(6):468. 30Zhang J T, Wei G, Keller T F, et al. Responsive hybrid polymeric/metallic nanoparticles for catalytic applications[J]. Macromol Mater Eng, 2010,295(11):1049. 31Zhang J, Ma N, Tang F, et al. pH-and glucose-responsive core-shell hybrid nanoparticles with controllable metal-enhanced fluorescence effects[J]. ACS Appl Mater Inter, 2012,4(3):1747. 32Wu W, Zhou T, Berliner A, et al. Smart core-shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery[J]. Chem Mater, 2010,22(6):1966. 33Wu W, Shen J, Li Y, et al. Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels[J]. Biomaterials, 2012,33(29):7115. 34Wu W, Mitra N, Yan E C, et al. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH[J]. ACS Nano, 2010,4(8):4831. 35Xie L, Chen M, Wu L M. Fabrication and properties of hollow poly (N-isopropylacrylamide)-Ag nanocomposite spheres[J]. J Polym Sci Pol Chem, 2009,47(19):4919. 36Karg M, Lu Y, Carbo-Argibay E, et al. Multiresponsive hybrid colloids based on gold nanorods and poly (NIPAM-co-allylacetic acid) microgels: Temperature-and pH-tunable plasmon resonance[J]. Langmuir, 2009,25(5):3163. 37Karg M, Hellweg T. Smart inorganic/organic hybrid microgels: Synthesis and characte-risation[J]. J Mater Chem, 2009,19(46):8714. 38Lu Y, Mei Y, Ballauff M, et al. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles[J]. J Phys Chem B, 2006, 110(9): 3930. 39Agrawal G, Schurings M P, Pich A, et al. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process[J]. J Mater Chem A, 2013, 1(42): 13244. 40Ajmal M, Farooqi Z H, Siddiq M. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity[J]. Korean J Chem Eng, 2013,30(11):2030. 41Palioura D, Armes S, Anastasiadis S, et al. Metal nanocrystals incorporated within pH-responsive microgel particles[J]. Langmuir, 2007,23(10):5761. 42Wu W T, Zhou T, Zhou S Q. Tunable photoluminescence of Ag nanocrystals in multiple-sensitive hybrid microgels[J]. Chem Mater, 2009,21(13):2851. 43Pelton R. Temperature-sensitive aqueous microgels[J]. Adv Colloid Interface Sci, 2000,85(1):1. 44Pich A, Karak A, Lu Y, et al. Preparation of hybrid microgels functionalized by silver nanoparticles[J].Macromol Rapid Commun, 2006,27(5):344. 45Kratz K, Hellweg T, Eimer W. Influence of charge density on the swelling of colloidal poly (N-isopropylacrylamide-coacrylic acid) microgels[J]. Colloids Surf A, 2000, 170(2): 137. 46Zhang C X, Li C, Chen Y Y, et al. Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers[J]. J Mater Sci, 2014,49(20):6872. 47Shah L A, Farooqi Z H, Naeem H, et al. Synthesis and characte-rization of poly (N-isopropylacrylamide) hybrid microgels with diffe-rent cross-linker contents[J]. J Chem Soc Pakistan, 2013,35(6):1522. 48Ye T, Jiang X M, Xu W T, et al. Tailoring the glucose-responsive volume phase transition behaviour of Ag@ poly (phenylboronic acid) hybrid microgels: From monotonous swelling to monotonous shrin-king upon adding glucose at physiological pH[J]. Polym Chem, 2014,5(7):2352. 49Murali Mohan Y, Lee K, Premkumar T, et al. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications[J]. Polymer, 2007,48(1):158. 50Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. J Nanopart Res, 2010,12(5):1531. 51Morones J R, Elechiguerra J L, Camacho A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005,16(10):2346. 52Das M, Sanson N, Kumacheva E. Zwitterionic poly (betaine-n-isopropylacrylamide) microgels: Properties and applications[J]. Chem Mater, 2008,20(22):7157. 53Murthy P K, Murali Mohan Y, Varaprasad K, et al. First successful design of semi-IPN hydrogel-silver nanocomposites: A facile approach for antibacterial application[J]. J Colloid Interface Sci, 2008, 318(2): 217. 54Balogh L, Swanson D R, Tomalia D A, et al. Dendrimer-silver complexes and nanocomposites as antimicrobial agents[J]. Nano Lett, 2001,1(1):18. 55Hantzschel N, Hund R D, Hund H, et al. Hybrid microgels with antibacterial properties[J]. Macromol Biosci, 2009,9(5):444. 56Liu F, Wang X, Ye K Q, et al. Layer-by-layer as-sembled microgel films containing silver nanoparticles as antimicrobial coatings on plastics[J]. Chem J Chin Universities, 2011,32(4):990. 57Li B, Smilgies D, Price A, et al. Poly (Nisopropylacrylamide) surfactant-functionalized responsive silver nanoparticles and superlattices[J]. ACS Nano, 2014, 8: 4799. 58Rajesh R, Venkatesan R. Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly (amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics[J]. J Mol Catal A—Chem, 2012,359:88. 59Lu Y, Mei Y, Schrinner M, et al. In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation[J]. J Phys Chem C, 2007,111(21):7676. 60Liu J, Wang J, Zhu Z, et al. Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes[J]. AIChE J, 2014,60(6):1977. 61Jiao T, Zhao H, Zhou J X, et al. Self-assembly reduced graphene oxide nanosheet hydrogel fabrication by anchorage of chitosan/silver and its potential efficient application toward dye degradation for wastewater treatments[J]. ACS Sustain Chem Eng, 2015, 3(12): 3130. 62Lu Y, Yu M, Drechsler M, et al. Ag nanocomposite particles: Preparation, characterization and application[J]. Macromol Symp, 2007,254:97. 63Thomas V, Namdeo M, Bajpai S, et al. Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach[J]. J Macromol Sci A, 2007,45(1):107. 64Tang F, Ma N, Tong L Y, et al. Control of metalenhanced fluorescence with pH- and thermoresponsive hybrid microgels[J]. Langmuir, 2011,28(1):883. 65Mei Y, Lu, Y, Polzer F, et al. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels[J]. Chem Mater, 2007, 19(5):1062. 66Hou C L, Ma K, Jiao T F, et al. Preparation and dye removal capacities of porous silver nanoparticle-containing composite hydrogels via poly (acrylic acid) and silver ions[J]. RSC Adv, 2016, 6(112): 110799. 67Wu W T, Shen J, Gai Z, et al. Multifunctional core-shell nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery[J]. Biomaterials, 2011,32:9876.