Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1745-1751    https://doi.org/10.11896/cldb.18010247
  高分子与聚合物基复合材料 |
纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质
薛雅楠1, 韩政学1, 李爽然1, 张佳宇1, 张雪慧1, 王兆伟1, 贾瑞洁1, 王艳芹1,2, 武晓刚1, 李晓娜1, 陈维毅1
1 太原理工大学生物医学工程学院,太原 030024
2 华南理工大学发光材料与器件国家重点实验室,广州 510640
Mechanical-Chemical Properties of Nanomaterial Doped Poly(vinyl alcohol) Dual Cross-linked Hydrogels
XUE Yanan1, HAN Zhengxue1, LI Shuangran1, ZHANG Jiayu1, ZHANG Xuehui1 , WANG Zhaowei1, JIA Ruijie1, WANG Yanqin1,2, WU Xiaogang1, LI Xiaona1, CHEN Weiyi1
1 School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 12913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚乙烯醇(PVA)为原料,氧化石墨烯(GO)和羟基磷灰石(HA)为共掺杂物,先以戊二醛作为交联剂,采用化学交联法制备了GO/HA/PVA单网络单交联复合水凝胶,再通过循环冷冻-解冻技术使PVA聚合物链间进一步发生氢键交联,制备得到GO/HA/PVA双网络双交联复合水凝胶。采用HRSEM、XRD表征了水凝胶的微观形貌和晶相结构,并研究了GO与PVA、HA与PVA在不同质量比及不同冷冻-解冻循环次数时制备所得GO/HA/PVA复合水凝胶的力学性能。结果表明:随着GO与PVA质量百分比的增加(0%~2.6%),该凝胶拉伸力学强度不断增强;随着HA与PVA质量比的增加(0.22~1.10),该凝胶的拉伸强度先增强后减弱;随着冷冻-解冻循环次数增加(0次、3次、7次)该凝胶的拉伸强度逐渐增强,弹性模量也逐渐提高。当GO与PVA质量百分比为1.9%、HA与PVA质量比为0.66、冷冻-解冻循环次数N=7次时,制备所得凝胶的拉伸力学性能最优(拉伸强度为695 kPa,断裂应变为286%,弹性模量为78 kPa)。 此外,深入研究了不同冷冻-解冻循环次数对水凝胶含水率和溶胀率的影响规律。结果表明:不同冷冻-解冻循环次数(0次、3次、7次)的凝胶含水率为79.3%~81.7%,平衡溶胀率为50.1%~72%,且均在60 min后达到溶胀平衡。该水凝胶有望作为软骨替代材料应用于临床医学领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛雅楠
韩政学
李爽然
张佳宇
张雪慧
王兆伟
贾瑞洁
王艳芹
武晓刚
李晓娜
陈维毅
关键词:  聚乙烯醇  氧化石墨烯  复合水凝胶  双交联  拉伸强度    
Abstract: In the present work, a series of graphene oxide (GO)/hydroxyapatite (HA)/poly(vinyl alcohol)(PVA) dual cross-linked composite hydrogels were synthesized by applying the combinatorial methods of chemical crosslinking and cyclic freezing-thawing, and varying the mass ra-tios of GO to PVA, HA to PVA and the number of times of cyclic freezing-thawing. Firstly, PVA chains covalently crosslinked at a rather low concentration (considering the bio-safety) of glutaraldehyde for the chemical-crosslinking of the first network. Then, during the cyclic freezing-thawing process, the PVA crystalline domains served as cross-linking knots and the hydrogen-bonding were formed for the secondary physical-crosslinking network. The resultant hydrogels were defined as the GO/HA/PVA dual cross-linked hydrogels. The structure of the GO/HA/PVA nanocomposite hydrogels was characterized by the high-resolution scanning electron microscope and X-ray diffraction. The tensile mechanical properties were further investigated for the dual cross-linked hydrogels differing in mass ratios of GO to PVA (0%—2.6%) and HA to PVA (0.22—1.10), and number of times of cyclic freezing-thawing (0, 3, 7). When the mass ratio of GO/PVA reached to 1.9%, HA/PVA reached to 0.66 and with 7 times cyclic freezing-thawing, the GO/HA/PVA dual cross-linked hydrogel achieved the maximum tensile strength and elongation at break of up to 695 kPa and 286%, and the Young's modulus was 78 kPa. We further investigated the water content and swelling behaviors of dual cross-linked hydrogels with various number of times of cyclic freezing-thawing (0, 3, 7). The results revealed that the water content was about 79.3%—81.7%, and the equilibrium swelling ratio was about 50.1%—72%. The hydrogel was expected to serve as cartilage substitution materials in clinical medicine field.
Key words:  poly(vinyl alcohol)    graphene oxide    composite hydrogel    dual cross-linking    tensile strength
                    发布日期:  2019-05-16
ZTFLH:  R318.08  
基金资助: 国家自然科学基金(11702183;11632013;11572213;11872262); 山西省青年科学基金(2016021145); 精细化工国家重点实验室开放基金(KF1511);发光材料与器件国家重点实验室开放基金(2019-skllmd-21)
通讯作者:  wangyanqin@tyut.edu.cn   
作者简介:  薛雅楠,现就读于太原理工大学,硕士研究生。目前主要研究方向为生物医用高分子材料的制备以及力、化学性能分析。王艳芹,太原理工大学副教授,硕士生导师。2013年毕业于南开大学,获理学博士学位。目前主要研究方向为生物医用高分子材料、纳米荧光生物传感器设计。主持国家自然科学青年基金,山西省青年基金等科研项目。
引用本文:    
薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
XUE Yanan, HAN Zhengxue, LI Shuangran, ZHANG Jiayu, ZHANG Xuehui , WANG Zhaowei, JIA Ruijie, WANG Yanqin, WU Xiaogang, LI Xiaona, CHEN Weiyi. Mechanical-Chemical Properties of Nanomaterial Doped Poly(vinyl alcohol) Dual Cross-linked Hydrogels. Materials Reports, 2019, 33(10): 1745-1751.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010247  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1745
1 Li W, Feng X, Chen R S. Polymer, 2005,46(25), 12026.
2 Jiang B. Journal of Applied Polymer Science, 2010,46(5), 783.
3 Spoljaric S, Salminen A, Luong N D, et al. European Polymer Journal, 2014,56(7), 105.
4 Sun T Y, Liang L J, Wang Q, et al. Biomaterials Science, 2014,2(3), 419.
5 Yang W T, Zhang L H, Ma Y H, et al. Journal of Materials Chemistry B, 2015,3(39), 7673.
6 Du Z S, Hu Y, Gu X Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,489, 1.
7 Chen S, Zhang M, Shao X, et al. Journal of Materials Chemistry B, 2015,3(33), 6798.
8 Nakajima T, Takedomi N, Gong J P, et al. Polymer Chemistry, 2010,1(5), 693.
9 Kim T H, Dan B A, Oh S H, et al. Biomaterials, 2015,40, 51.
10 Gong J P. Soft Matter, 2010,6(12), 2583.
11 Gong J P, Katsuyama Y, Kurokawa T, et al. Advanced Materials, 2003,15(14), 1155.
12 Kamata H, Akagi Y, Kayasugakariya Y, et al. Science, 2014,343(6173), 873.
13 Hu J, Hiwatashi K, Gong J P, et al. Macromolecules, 2011,44(19), 7775.
14 Tuncaboylu D C, Sari M, Oppermann W, et al. Macromolecules, 2011,44(12), 4997.
15 Nakajima T, Furukawa H, Gong J P, et al. Macromolecules, 2009,42(6), 2184.
16 Tian S, Shan G R, Wang L Y. Acta Polymerica Sinica, 2010(10), 1175(in Chinese).
田帅, 单国荣, 王露一. 高分子学报, 2010(10), 1175.
17 Myung D, Koh W, Frank C W, et al. Polymer, 2007,48(18), 5376.
18 Belay M, Sonker A K, Nagarale R K, et al. Polymer International, 2017,66, 1737.
19 Tang Y, Pang L B, Wang D P. Journal of Non-Crystalline Solids, 2017,476, 25.
20 Xue F. Preparation and study on properties of PVA composite hydrogel. Master's Thesis, Southwest Petroleum University, China, 2016 (in Chinese).
薛飞. PVA复合水凝胶的制备及其性能研究. 硕士学位论文,西南石油大学, 2016.
21 Wang F. The synthesis and physicochemical properties of poly(vinyl alcohol)-gellan gun composite hydrogel. Master's Thesis,Soochow University, China,2016 (in Chinese).
王飞. 聚乙烯醇-结冷胶复合水凝胶的制备和物理化学性质研究.硕士学位论文,苏州大学, 2016.
22 Wang T, Hu X B, Liu X X, et al. Scientia Sinica Chimica, 2012,42(5), 650(in Chinese).
王涛, 胡小波, 刘新星,等. 中国科学:化学, 2012,42(5), 650.
23 Chetty A, Steynberg T, Moolman S, et al. Journal of Biomedical Mate-rials Research Part A, 2008,84(2), 475.
24 Liang J J, Huang Y, Zhang L, et al. Advanced Functional Materials, 2010,19(14), 2297.
25 Han X F, Qi D D, Zhang L, et al. Acta Polymerica Sinica, 2014(2), 218(in Chinese).
韩哓芳, 齐栋栋, 张玲,等. 高分子学报, 2014(2), 218.
26 Zhang L, Wang Z, Gao J, et al. Journal of Materials Chemistry, 2011,21(28), 10399.
27 Shen Y Q, Chen K, Dai Z M. Materials Review B:Research Papers, 2015,29(5), 73(in Chinese).
沈艳秋, 陈凯, 戴祖明. 材料导报:研究篇, 2015,29(5), 73.
28 Marcano D C, Kosynkin D V, Berlin J M, et al. ACS Nano, 2010,4(8), 4806.
29 Zhang H, Zhai D, He Y. RSC Advances, 2014,4(84), 44600.
30 Kong W, Huang D, Xu G, et al. Chemistry-An Asian Journal, 2016,11(11), 1697.
31 Hu M, Gu X, Hu Y, et al. Macromolecular Materials and Engineering, 2016,301(11), 1352.
32 Zhang L, Li Y B, Wei J, et al. Journal of Functional Materials, 2005,36(3), 441(in Chinese).
张利,李玉宝,魏杰,等. 功能材料, 2005,36(3), 441.
33 Pan Y S. Study on preparation of n-HA/PVA gels as articular cartilage repair material. Ph.D. Thesis, Nanjing University of Science and Technology, China, 2007 (in Chinese).
潘育松. n-HA/PVA凝胶关节软骨修复材料制备与性能研究. 博士学位论文,南京理工大学, 2007.
34 Lin P, Ma S H, Wang X L, et al. Advanced Materials, 2015,27(12), 2054.
[1] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[2] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[3] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[4] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[5] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[6] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[7] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[8] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[9] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[10] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[11] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[12] 李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
[13] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[14] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[15] 王德玄, 王磊, 于良民. 三维结构聚丙烯酰胺/聚乙烯醇水凝胶的合成及其在超级电容器中的应用[J]. 材料导报, 2018, 32(17): 2907-2911.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed