Please wait a minute...
材料导报  2018, Vol. 32 Issue (24): 4363-4369    https://doi.org/10.11896/j.issn.1005-023X.2018.24.028
  高分子与聚合物基复合材料 |
动态线性电极静电纺PVA纳米纤维的可纺性
李婷婷1,2, 闫梦雪1, 吴宗翰3, 姜茜1,2, 林佳弘1,3,4
1 天津工业大学纺织学院智慧纺织与节能制品创新平台,天津 300387;
2 天津工业大学先进纺织复合材料教育部重点实验室,天津 300387;
3 中国台湾逢甲大学纤维与复合材料学系纤维应用与制造实验室,中国台湾 40724;
4 闽江学院海洋学院化工与材料系,福州 350108
The Spinnability Study of the Dynamic Linear Electrode Electrospun PVA Nanofibers
LI Tingting1,2, YAN Mengxue1, WU Zonghan3, JIANG Qian1,2, LIN Jia-Horng1,3,4
1 Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles, Tianjin Polytechnic University, Tianjin 300387;
2 Key Laboratory for Advanced Textile Composite Materials of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387;
3 Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taiwan, China 40724;
4 Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108
下载:  全 文 ( PDF ) ( 7014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决传统针式静电纺针头易堵塞不易产业化的问题,采用铜丝动态线性电极静电纺丝技术对PVA纳米纤维的可纺性进行研究。利用扫描电子显微镜研究了PVA溶液浓度、电压和纺丝距离对PVA纤维形貌及直径分布的影响。结果表明:随PVA溶液浓度降低,溶液粘度和电导率减小,纤维直径及其分布变小。且随纺丝距离增大,纤维直径变细,纤维形貌变好。当PVA浓度为10%(质量分数),电压80 kV,距离30 cm时,可制备出形貌良好的纳米纤维,其直径为433 nm,产量高达 6.8 g/h ;当PVA浓度为5%(质量分数),电压80 kV,距离30 cm, 可纺最细纤维直径为96 nm。本研究可为未来PVA静电纺纳米纤维膜的规模化制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李婷婷
闫梦雪
吴宗翰
姜茜
林佳弘
关键词:  聚乙烯醇可纺性  静电纺丝  线性电极  纤维形貌  直径    
Abstract: In order to solve the problem of needle blocking and hard industrialization of traditional needle-type electrospinning, the PVA nanofibers was spun by using the copper wire dynamic linear electrode electrospinning technique. The influences of PVA solution concentration, voltage and spinning distance on the morphology and diameter distribution of PVA nanofibers were studied by scanning electron microscopy (SEM). The results showed that, when PVA solution concentration decreased, solution viscosity and conductivity decreased, fiber diameter and its distribution became narrow. With the increase in spinning distance, the fiber diameter became smaller, and the fiber morphology became better. When the PVA concentration was 10wt%, the voltage was 80 kV and the distance was 30 cm, the nanofibers had good morphology, the diameter was 433 nm, and the yield reached 6.8 g/h. When the PVA concentration was 5wt%, the voltage was 80 kV, distance was 30 cm, the smallest diameter of spinning fibers reached 96 nm. This study can provide a reference for the future large-scale preparation of PVA electrospun nanofibers.
Key words:  PVA spinnability    electrospinning    linear electrode    fiber morphology    diameter
                    发布日期:  2019-01-23
ZTFLH:  TQ340.64  
基金资助: 天津市高等学校创新团队项目(TD13-5043);国家自然科学基金(51503145;11702187);天津市自然科学基金(18JCQNJC03400);福建省自然科学基金(2018J01505;2018J01504)
通讯作者:  林佳弘:通信作者,教授,博士研究生导师,研究方向为纳米复合材料的制备及性能 E-mail:jhlin@fcu.edu.tw   
作者简介:  李婷婷:女,1985年生,博士,硕士研究生导师,主要研究方向为医用纺织复合材料的结构及性能
引用本文:    
李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
LI Tingting, YAN Mengxue, WU Zonghan, JIANG Qian, LIN Jia-Horng. The Spinnability Study of the Dynamic Linear Electrode Electrospun PVA Nanofibers. Materials Reports, 2018, 32(24): 4363-4369.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.24.028  或          http://www.mater-rep.com/CN/Y2018/V32/I24/4363
1 Jia L, Zhang H X, Wang X X. Research and development of aligned nanofibers prepared by electrospinning[J].Journal of Textile Research,2016,37(1):159(in Chinese).
贾琳,张海霞,王西贤.静电纺取向纳米纤维制备技术的研究进展[J].纺织学报,2016,37(1):159.
2 Liu L F, Li W, Huang X N. Preparation and application of the electrospinning nanofibers[J].Journal of Capital Normal University,2017(1):58(in Chinese).
刘力菲,李伟,黄潇楠.静电纺丝纳米纤维的制备与应用[J].首都师范大学学报(自然科学版),2017(1):58.
3 Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel?[J].Advanced Materials,2004,16(14):1151.
4 Bhardwaj N, Kundu S C. Electrospinning: A fascinating fiber fabrication technique[J].Biotechnology Advances,2010,28(3):325.
5 Tian L, Li J, Pan Z J. Research status of multi-jet electrospinning technology[J].Journal of Textile Research,2013,34(9):150(in Chinese).
田龙,李杰,潘志娟.多射流静电纺丝技术的研究现状[J].纺织学报,2013,34(9):150.
6 Hao M L, Guo J S. Latest progress on electrospinning at home and abroad[J].China Textile Leader,2013(1):58(in Chinese).
郝明磊,郭建生.国内外静电纺丝技术的研究进展[J].纺织导报,2013(1):58.
7 Lukas D, Sarkar A, Pokorny P. Self-organization of jets in electrospinning from free liquid surface: A generalized approach[J].Journal of Applied Physics,2008,103(8):084309.
8 Wang F L, Zhao Z S, He J, et al. Research advances in electrospinning collectorsfor preparation of nanofibers[J].Journal of Textile Research,2014(1):64(in Chinese).
王飞龙,邵珠帅,何钧,等.制备纳米纤维的静电纺丝接收器研究进展[J].纺织学报,2014(1):64.
9 Huang X, Wu D, Zhu Y, et al. Needleless electrospinning of multiple nanofibers[C]∥Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on. IEEE,2007:823.
10 He J H, Liu Y, Xu L, et al. Biomimic fabrication of electrospun nanofibers with high-throughput[J].Chaos, Solitons & Fractala,2008,37(3):643.
11 Wang X, Niu H, Lin T, et al. Needleless electrospinning of nanofibers with a conical wire coil[J].Polymer Engineering & Science,2009,49(8):1582.
12 Pan Y J, Lin J H, Chiang K C. Biomedical applications of antibacterial nanofiber mats made of electrospinning with wire electrodes[J].Applied Sciences-Basel,2016,6(2):46.
13 Hsieh C T, Lou C W, Pan Y J, et al. Fabrication of poly (vinyl alcohol) nanofibers by wire electrode-incorporated electrospinning[J].Fibers & Polymers,2016,17(8):1217.
14 Shenoy S L, Bates W D, Frisch H L, et al. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit[J].Polymer,2005,46(10):3372.
15 Seguela R. Critical review of the molecular topology of semicrystalline polymers: The origin and assessment of intercrystalline tie molecules and chain entanglements[J].Journal of Polymer Science B Polymer Physics,2005,43(14):1729.
16 Li N, Qin X H, Wang S Y. Effect of solution properties on the morphology of electrospun nanofibers[J].Journal of Textile Research,2008,29(4):1(in Chinese).
李妮,覃小红,王善元.溶液性质对静电纺纤维形态的影响[J].纺织学报,2008,29(4):1.
[1] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[2] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[3] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[4] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[5] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[6] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[7] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[8] 李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
[9] 杨磊,王乐民,李佳星,范晓光,郝浩然,裴红杰,伞迦楠,薛钧文. P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM)四元共聚物 的温度及葡萄糖响应行为[J]. 《材料导报》期刊社, 2018, 32(12): 1959-1966.
[10] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[11] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
[12] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[13] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[14] 陶磊,郑云武,邸明伟,张彦华,郑志锋. 由液化物树脂制备多孔碳纳米纤维及其表征*[J]. 材料导报编辑部, 2017, 31(10): 101-106.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed