Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2340-2344    https://doi.org/10.11896/j.issn.1005-023X.2018.14.003
  无机非金属及其复合材料 |
煅烧温度对铁酸铋纤维形貌及性能的影响
李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟
山东理工大学材料科学与工程学院,淄博 255049
Effect of Calcining Temperature on Morphology and Properties of BiFeO3 Fibers
LI Yan’an, YANG Rulu, ZHANG Hua, SUN Haibin, SI Weimeng, LI Jiao
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049
下载:  全 文 ( PDF ) ( 3166KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用静电纺丝技术制备了铁酸铋(BiFeO3,BFO)纤维,研究了煅烧温度对样品光吸收、铁电、铁磁及光催化性能的影响,并对样品的微观形貌、物相组成进行了表征。结果表明,当煅烧温度为550 ℃时能够获得表面光滑、束径约为220 nm的连续纤维状钙钛矿BFO,但存在少量Bi25FeO40杂质相;当温度升至600 ℃时,杂质相消失,纤维束径减小且形貌变为串珠状;进一步提高煅烧温度,BFO纤维发生断裂、垮塌,并在700 ℃形成不规则短粗棒状产物。在600 ℃煅烧温度条件下得到的BFO纤维具有良好的连续性、较好的铁电性能以及较高的光催化活性和稳定性,这与其具有较好的结晶性能、较小的带隙以及特殊的一维形貌有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李延安
杨汝禄
张华
孙海滨
司维蒙
李蛟
关键词:  静电纺丝  铁酸铋纤维  煅烧温度  形貌    
Abstract: By an electrospinning and a subsequent calcination process, a series of BiFeO3 (BFO) fibers differing in calcining temperature were prepared. The calcining temperature dependence of the photoabsorbing, ferroelectric, ferromagnetic and photocatalytic properties of the resultant BFO fibers were investigated, and the morphology and phase composition were also characterized. Results showed that the continuous perovskite BFO fibers with smooth surfaces, diameters of about 220 nm, and a few Bi25FeO40 impurity can be obtained by calcination at 550 ℃. A higher calcining temperature (600 ℃) causes the elimination of impurity phase, the decrement of fiber diameter, as well as the morphology transition to the bead string. Moreover, the further increased temperature (approaching 700 ℃) will result in the morphology of irregularly short sticks due to the breakup and collapse of BFO fibers. The electrospun fibers calcined at 600 ℃ show outstanding ferroelectricity, high photocatalytic activity and stability, which can be attri-buted to better crystallinity, narrower band gap and unique one-dimensional morphology.
Key words:  electrospinning    BFO fiber    calcining temperature    morphology
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TQ135.32  
  O482.54  
基金资助: 山东省高等学校科技发展计划(J15LA08);山东理工大学青年教师发展支持计划(4072-114019)
通讯作者:  李蛟,男,1976年生,博士,副教授,硕士研究生导师,研究方向为微纳米光电子材料 E-mail:haiyan9943@163.com   
作者简介:  李延安:男,1993年生,硕士研究生,研究方向为微纳米光电子材料 E-mail:photocatalysis_an@126.com
引用本文:    
李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
LI Yan’an, YANG Rulu, ZHANG Hua, SUN Haibin, SI Weimeng, LI Jiao. Effect of Calcining Temperature on Morphology and Properties of BiFeO3 Fibers. Materials Reports, 2018, 32(14): 2340-2344.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.003  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2340
1 Gao F, Chen X Y, Yin K B, et al. Visible-light photocatalytic pro-perties of weak magnetic BiFeO3 nanoparticles[J]. Advanced Materials,2007,19(19):2889.
2 Tang P S, Chen H F, Cao F, et al. Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts[J]. Catalysis Science & Technology,2011,1:1145.
3 Hao C X, Wen F S, Xiang J Y, et al. Photocatalytic performances of BiFeO3 particles with the average size in nanometer, submicrometer, and micrometer[J]. Materials Research Bulletin,2014,50:369.
4 Humayun M, Zada A, Li Z J, et al. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism[J]. Applied Catalysis B: Environmental,2016,180:219.
5 Niu F, Chen D, Qin L S, et al. Synthesis of Pt/BiFeO3 heterostructured photocatalysts for highly efficient visible-light photocatalytic performances[J]. Solar Energy Materials & Solar Cells,2015,143:386.
6 Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nature Materials,2005,4(6):455.
7 Zhang H Z, Sun X C, Wang R M, et al. Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass[J]. Journal of Crystal Growth,2004,269(2-4):464.
8 Prashanthi K, Gaikwad R, Thundat T. Surface dominant photoresponse of multiferroic BiFeO3 nanowires under sub-bandgap illumination[J]. Nanotechnology,2013,24(50):505710.
9 Prashanthi K, Dhandharia P, Miriyala N, et al. Enhanced photo-collection in single BiFeO3 nanowire due to carrier separation from radial surface field[J]. Nano Energy,2015,13:240.
10 Li J, Liu J C, Gao C J. Improved efficiency of organic solar cells with modified hole-extraction layers[J]. Journal of Polymer Science Part B: Polymer Physics,2012,50(2):125.
11 Liu S, Zhang W, Li H P, et al. Photocatalysis of BiFeO3 via electrospinning method[J]. Rare Metal Materials and Engineering,2011,40(S1):122(in Chinese).
刘珊,张威,李和平,等.静电纺丝法制备BiFeO3纳米纤维的光催化性质[J].稀有金属材料与工程,2011,40(S1):122.
12 Carvalho T T, Tavares P B. Synthesis and thermodynamic stability of multiferroic BiFeO3[J]. Materials Letters,2008,62(24):3984.
13 Yang C X, Lin Y Y, Tang T A. Structure and characteristics of the BiFeO3 fabricated by the sol-gel technique[J]. Journal of Functional Materials,2015,36(3):304(in Chinese).
杨彩霞,林殷茵,汤庭鳌.溶胶-凝胶法制备BiFeO3铁电薄膜的结构和特性[J].功能材料,2015,36(3):304.
14 Zhang X Q. Preparation and investigation of the biamuth iron oxide based multiferroics[D]. Harbin: Harbin Institute of Technology,2011(in Chinese).
张行泉.铁酸铋基多铁性材料的制备与物性研究[D].哈尔滨:哈尔滨工业大学,2011.
15 Zhu Y J. Preparation and modification of BiFeO3 nanofibers by electrospining[D]. Zhenjiang: Jiangsu University,2016(in Chinese).
朱亚军.BiFeO3纳米纤维的电纺制备及其改性研究[D].镇江:江苏大学,2016.
16 Wu L, Sui W B, Dong C H, et al. One-dimensional BiFeO3 nanotubes: Preparation, characterization, improved magnetic behaviors, and prospects[J]. Applied Surface Science,2016,384:368.
17 Chen M, Wang Y, Wan P F, et al. Structure and morphological research of BiFeO3 nanofibers prepared by electrospinning method[J]. Journal of Tianjin University of Technology,2014,30(3):45(in Chinese).
陈萌,王越,宛鹏菲,等.用电纺法制备的BiFeO3纳米纤维及其结构和形态研究[J].天津理工大学学报,2014,30(3):45.
18 Lin P, Cui S M, Zeng X R, et al. Giant dielectric response and enhanced thermal stability of multiferroic BiFeO3[J]. Journal of Alloys and Compounds,2014,600(24):118.
19 Vijayasundaram S V, Suresh G, Kanagadurai R. Chemically synthesized phase-pure BiFeO3 nanoparticles: Influence of agents on its purity[J]. Nano-Structures & Nano-Objects,2016,8:1.
20 Nie G D, Li S K, Lu X F, et al. Progress on applications of inorga-nic nanofibers synthesized by eleetrospinning technique[J]. Chemical Journal of Chinese Universities,2013,34(1):15(in Chinese).
乜广弟,力尚昆,卢晓峰,等.静电纺丝技术制备无机纳米纤维材料的应用[J].高等学校化学学报,2013,34(1):15.
21 Bharathkumar S, Sakar M,Balakumar S. Experimental evidence for the carrier transportation enhanced visible light driven photocatalytic process in bismuth ferrite (BiFeO3) one-dimensional fiber nanostructures[J]. The Journal of Physical Chemistry C,2016,120(33):18811.
22 Gu Y P. Electrospinning synthesis and optical properties of SnO2:xLn3+ (Ln=Eu,Sm,Tb,Dy) nanofibers[D]. Changchun: Jilin University,2014(in Chinese).
谷怡蓬.静电纺丝法制备SnO2:xLn3+(Ln=Eu, Sm, Tb, Dy)纳米纤维及其光学性质研究[D].长春:吉林大学,2014.
23 Priyadharsini P, Pradeep A, Sathyamoorthy B, et al. Enhanced multiferroic properties in La and Ce co-doped BiFeO3 nanoparticles[J]. Journal of Physics and Chemistry of Solids,2014,75(7):797.
24 Yao X F, Zhang J X. Decade of advances in the magnetoelectric multiferroic most desired material-----BiFeO3[J]. Physics,2014,43(4):227(in Chinese).
姚携菲,张金星.磁电多铁性材料的宠儿:铁酸铋(BiFeO3)研究进展的十年回顾[J].物理,2014,43(4):227.
25 Goswami S, Bhattacharya D, Choudhury P, et al. Multiferroic coupling in nanoscale BiFeO3[J]. Applied Physics Letters,2011,99:073106.
26 Yang Y C, Wen J W, Wei J H, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination[J]. ACS Applied Materials & Interfaces,2013,5(13):6201.
27 Lu H D, Du Z Y, Wang J X, et al. Enhanced photocatalytic performance of Ag-decorated BiFeO3 in visible light region[J]. Journal of Sol-Gel Science and Technology,2015,76(1):50.
28 Liu Y, Zuo R Z, Qi S S. Controllable preparation of BiFeO3@carbon core/shell nanofibers with enhanced visible photocatalytic activity[J]. Journal of Molecular Catalysis A: Chemical,2013,376(9):1.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[3] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[4] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[5] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[6] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[7] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[8] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[9] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[10] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[11] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[12] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[13] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[14] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[15] 郝贠洪, 雅茹罕, 李慧, 赵呈光. 田口方法下钢化玻璃的冲蚀性能及损伤形貌[J]. CLDB, 2018, 32(8): 1380-1384.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed