Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1619-1623    https://doi.org/10.11896/cldb.18120189
  无机金属及其复合材料 |
针对静电纺丝SiC纤维纳米化的溶液参数优化设计
陈莹1, 侯翼2,3, 成来飞2
1 西北工业大学教育实验学院,西安 710072
2 西北工业大学材料学院,西安 710072
3 新加坡国立大学淡马锡实验室,新加坡 117411
Optimization of Solution Parameters in Preparing SiC Nanofibers by Electrospinning
CHEN Ying1, HOU Yi2,3, CHENG Laifei2
1 Honors College, Northwestern Polytechnical University, Xi'an 710072
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
3 Temasek Laboratories, National University of Singapore, Singapore 117411
下载:  全 文 ( PDF ) ( 21289KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 一维SiC纳米材料不仅具有陶瓷材料高强度、高模量、优异的化学稳定性和高温稳定性等优势,还拥有高比表面积、可设计的微结构和可控介电性能,在电磁吸波领域有着重要应用价值。静电纺丝技术是一种制备连续纳米纤维的有效方法,目前利用该方法制备SiC陶瓷纤维的研究还处于初期探索阶段,适用的溶液体系和参数比较混杂且缺乏系统研究,特别是以SiC纤维纳米化为目标的纺丝溶液体系优化设计还未见报道。本研究以SiC纳米纤维的纺丝前驱体聚碳硅烷(PCS)溶液为研究对象,系统分析了溶剂种类、高分子助纺剂种类和浓度、溶液配比和粘度、添加剂种类和添加量对纺丝纤维形貌和微结构的影响规律,进一步确定了以氯仿为溶剂、聚己内脂酯(PCL)为助纺剂、乙酰丙酮铪(Hf(acac)4)为添加剂的纺丝溶液体系。为了获得结构连续、形貌均一的SiC纳米纤维,PCL的最优浓度约为0.087 5 g/mL,PCS最优浓度为0.125~0.15 g/mL,添加剂Hf(acac)4的浓度不超过0.025 g/mL。经过纺丝溶液参数的优化,成功获得了平均直径为340 nm的柔性SiC纳米纤维薄膜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈莹
侯翼
成来飞
关键词:  静电纺丝  SiC纳米纤维  聚碳硅烷(PCS)溶液  溶液参数优化    
Abstract: One dimensional SiC nano-materials not only hold high strength and modulus, exceeding chemical stability and high temperature resistance, but also bear large specific surface area, controllable microstructure and dielectric properties, which enable the exceptional application value of 1D SiC nano-materials in the sector of electromagnetic absorption. Electrospinning is generally recognized as an effective approach to fabricate continuous SiC nanofibers. At present, the preparation of SiC ceramic fibers by electrospinning is still in the preliminary stage of exploration, there is a confusion in adaptable spinning solutions and their parameters, as well as a lack of systematic study, especially in optimization of solution aiming at preparing nanoscale SiC fibers by electrospinning. In this study, we took the polycarbosilane (PCS) solution, the precursor for electrospun SiC nanofibers, as research object, analyzed the effects of the kinds of solvents, type and concentration of polymer spinning aid, ratio and viscosity of the solution, types and amounts of additives on the morphology and microstructure systematically. Accordingly, we confirmed the sa-tisfactory solvent-spinning aid-additive system that include solvent chloroform, spinning aid polycaprolactone (PCL) and addictive hafnium acetone (Hf(acac)4). To prepare nanoscale SiC fibers with continuous microstructure and uniform morphology, the optimal concentration of PCL was 0.087 5 g/mL, the concentration range of PCS was 0.125—0.15 g/mL, and the addition amount of Hf(acac)4 should not exceed 0.025 g/mL. Consequently, the flexible SiC nanofibers with the average diameter of 340 nm were successfully obtained after optimization of spinning solution.
Key words:  electrospinning    SiC nanofibers    polycarbosilane (PCS) solution    optimization of spun solution
               出版日期:  2019-05-25      发布日期:  2019-05-16
ZTFLH:  TB32  
通讯作者:  tslou@nus.edu.sg   
作者简介:  陈莹,2016年3月毕业于西北工业大学生命学院,获得工程硕士学位。于2016年4月至今在西北工业大学教育实验学院工作,主要从事多孔钛合金植入材料及其力学适配机制、SiC基纳米纤维材料研究。在Journal of the Mechanical Behavior of Biomedical Materials期刊发表论文一篇。侯翼,新加坡国立大学淡马锡实验室,助理科学家。2013年9月至今在西北工业大学在读博士,2018年10月加入新加坡国立大学淡马锡实验室工作至今,主要从事SiC基纳米纤维材料的制备工艺研究和功能化应用,磁性材料在低频电磁吸波/屏蔽领域的应用。在ACS Applied Materials & Interfaces、Journal of the European Ceramic Society、Ceramic International等国外重要期刊发表论文6篇,申报发明专利4项。
引用本文:    
陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
CHEN Ying, HOU Yi, CHENG Laifei. Optimization of Solution Parameters in Preparing SiC Nanofibers by Electrospinning. Materials Reports, 2019, 33(10): 1619-1623.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120189  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1619
1 Wu R, Zhou K, Yue C Y, et al. Progress in Materials Science, 2015, 72, 1.
2 Chen J J. Preparation, properties and mechanism of SiC nanowires. Ph.D. Thesis, Zhejiang University, China, 2008(in Chinese).
陈建军. 碳化硅纳米线的制备、性能与机理研究. 博士学位论文, 浙江大学, 2008.
3 Cheng L, Xu Y, Zhang L, et al. Composites: Part A, 2000, 31(9), 1015.
4 LaChapelle D, Noe M, Edmondson W, et al. American Institute of Aeronautics and Astronautics. AIAA, 1998, 98, 3266.
5 Naslain R R. International Journal of Applied Ceramic Technology, 2005, 2(2), 75.
6 Naslain R. Composites Science and Technology, 2004, 64(2), 155.
7 Yang H, Cao M, Li Y, et al. Advanced Optical Materials, 2014, 2(3), 214.
8 Fang X, Bando Y, Gautam U K, et al.Journal of Materials Chemistry, 2008, 18(5), 509.
9 Oliveros A, Guiseppi-Elie A, Saddow S E.Biomedical Microdevices, 2013, 15 (2), 353.
10 Ledoux M J, Pham-Huu C. Cattech, 2001, 5 (4), 226.
11 Chiu S C, Yu H C, Li Y Y. Journal of Physical Chemistry C, 2010, 114 (4), 1947.
12 Kuang J, Cao W. Applied Physical Letters, 2013, 103(11), 112906.
13 Ma X M, Feng C X, Tian X M, et al. Hi-Tech Fiber and Application, 2013(5), 47(in Chinese).
马小民, 冯春祥, 田秀梅, 等. 高科技纤维与应用, 2013(5), 47.
14 Lin M, Loh K P, Boothroyd C, Du A. Applied Physical Letters, 2004, 85(22), 5388.
15 Dai J, Sha J, Zhang Z, et al.Ceramics International, 2015, 41(8), 9637.
16 Wu R, Zhou K, Yang Z, et al. CrystEngComm, 2013, 15(3), 570.
17 Liu Y, Liu Y, Choi W C et al. Journal of Materials Chemistry A, 2017, 5, 2664.
18 Wang B, Wang Y, Lei Y, et al. Materials and Manufacturing Processes, 2016, 31 (10), 1357.
19 Ahmed F E, Lalia B S, Hashaikeh R. Desalination, 2015, 356, 15.
20 Wang X, Ding B, Sun G, et al.Progress in Materials Science, 2013, 58(8), 1173.
21 Zhang T, Zhang J, Liu W, et al. Journal of Functional Materials, 2018, 49(6), 6041(in Chinese).
张婷,张捷,刘伟等.功能材料, 2018,49(6), 6041.
22 Panda P K, Ramakrishna S. Journal of Materials Science, 2007, 42(6), 2189.
23 Patel A C, Li S, Wang C, et al.Chemistry of Materials, 2007, 19 (6), 1231.
24 Hou Y, Zhang Y, Du X, et al. RSC Advances, 2018, 8(59), 33574.
25 Hou Y, Cheng L, Zhang Y, et al. ACS Applied Materials & Interfaces, 2017, 9(8), 7265.
26 Wang P, Cheng L, Zhang Y, et al. Ceramics International, 2017, 43(10), 7424.
27 Hou Y, Cheng L, Zhang Y, et al. ACS Applied Materials & Interfaces, 2018, 10(35), 29876.
28 Choi S H, Youn D Y, Jo S M, et al. ACS Applied Materials & Interfaces, 2011, 3(5), 1385.
29 Wang Y, Han C, Zheng D, et al. Journal of Materials Chemistry A, 2014, 2(25), 9607.
30 Liu H A, Balkus Jr K J. Materials Letters, 2009, 63(27), 2361.
31 Ye L, Ge K, Qiu W, et al. Materials Letters, 2015, 141, 210.
32 Kim T E, Juon S M, Park J H, et al. International Journal of Hydrogen Energy, 2014, 39(29), 16474.
33 Shin D G, Cho K Y, Jin E J, et al. Journal of Ceramic Processing Research, 2013, 14(4), 463.
34 Wang Y, Wang B, Lei Y, et al. Applied Surface Science, 2015, 335, 208.
35 Han C, Wang Y, Lei Y, et al. Ceramics International, 2016, 42(4), 5368.
36 Wang B, Wang Y, Lei Y, et al. Journal of Materials Chemistry A, 2014, 2(48), 20873.
37 Yu Y, Chen Y, An L. International Journal of Applied Ceramic Technology, 2014, 11(4), 699.
38 Li J, Cao P, Tan Y, et al. Journal of Advanced Ceramics, 2013, 2(3), 242.
39 Ramakrishna S, Fujihara K, Teo W E, et al. An introduction to electrospinning and nanofibers, World Scientific Publishing Co. Pte. Ltd, Singapore, 2005.
40 Mitchell G R.Electrospinning: Principles, practice and possibilities, Royal Society of Chemistry, UK, 2015.
41 Chang K H, Lin H L. Journal of Polymer Research, 2009, 16(6), 611.
42 Morozov V, Morozova T, Kallenbach N. International Journal of Mass Spectrometry, 1998, 178(3), 143.
43 Barakat N A M, Kanjwal M A, Sheikh F A, et al. Polymer, 2009, 50(18), 4389.
44 Ye H, Titchenal N, Gogotsi Y, et al. Advanced Materials, 2005, 17(12), 1531.
45 Ren J, Zhang Y, Zhang P, et al. Surface & Coating Technology, 2017, 311, 191.
46 Sacks M D, Wang C A, Yang Z, et al. Journal of Materials Science, 2004, 39(19), 6057.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
[3] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[4] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[5] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[6] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[7] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[8] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[9] 李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
[10] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[11] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
[12] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[13] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[14] 陶磊,郑云武,邸明伟,张彦华,郑志锋. 由液化物树脂制备多孔碳纳米纤维及其表征*[J]. 材料导报编辑部, 2017, 31(10): 101-106.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed