Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 545-548    https://doi.org/10.11896/j.issn.1005-023X.2018.04.007
  材料研究 |
静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征
张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延
太原理工大学力学学院,山西省材料强度与结构冲击重点实验室,太原 030024
Synthesis and Characterization of β-Cyclodextrin/Ag-graphene-based Electrospun Fiber Membranes for Antibiosis
ZHANG Xuerong, HU Yinchun, XI Shaohui, WANG Zhaowei, ZHAN Yan, HUANG Di, HU Chaofan, WEI Yan
Shanxi Key Laboratory of Material Strength & Structural Impact, College of Mechanics,Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 1784KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用“一锅法”将纳米银颗粒负载到氧化石墨烯片上。利用静电纺丝和原位热交联方法制备了具有抗菌功能的β-环糊精/氧化石墨烯载银复合纳米纤维膜。采用扫描电子显微镜、能谱、傅里叶红外光谱、热分析及抑菌圈法对纤维膜进行了形貌、结构表征及抗菌性能测试。结果表明:热交联反应不影响β-环糊精的环状结构;添加AGCN的纳米纤维膜表面粗糙,AGCN表面的基团不参与纤维膜的热交联反应;添加AGCN的纤维膜具有良好的抗菌性能,当AGCN含量增加时,纤维膜对大肠杆菌和金黄色葡萄球菌的抗菌性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雪荣
胡银春
席少晖
王兆伟
战岩
黄棣
胡超凡
魏延
关键词:  静电纺丝  β-环糊精;  石墨烯载银  抗菌    
Abstract: The one pot method was used to load nano Ag particle on graphene oxide nanosheets(AGCN). β-cyclodextrin/Ag-graphene composite nanosheets-based fiber membranes were synthesized by electrospinning and in situ thermal cross-linking. Scanning electron microscopy, energy spectrum, Fourier transform infrared spectra, differential scanning calorimetry and the detection of inhibition zone were used to characterize the morphology, structure and antibacterial property of fiber membranes. The results showed that thermal cross-linking did not influence cyclic structure of β-cyclodextrin. The surface of fibers with AGCN was rough, and AGCN did not participate in thermal cross-linking. Fiber membranes had good antibacterial property after the addition of AGCN. Meanwhile, the antibacterial property was improved with the increasing amount of AGCN.
Key words:  electrospinining    β-cyclodextrin;    Ag-graphene    antisepsis
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TB324  
基金资助: 国家自然科学基金(11502158; 51503140); 太原理工大学青年科学基金(1205-04020203); 太原理工大学人才基金(tyut-rc201315a)
通讯作者:  胡银春:,女,1983年生,讲师,主要从事静电纺丝技术及其在生物医学、水处理领域的应用研究 E-mail:yinchunhu117@163.com   
作者简介:  张雪荣:女,1992年生,硕士研究生,研究方向为高性能抗菌过滤膜材料 E-mail:lucyxue92@163.com
引用本文:    
张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
ZHANG Xuerong, HU Yinchun, XI Shaohui, WANG Zhaowei, ZHAN Yan, HUANG Di, HU Chaofan, WEI Yan. Synthesis and Characterization of β-Cyclodextrin/Ag-graphene-based Electrospun Fiber Membranes for Antibiosis. Materials Reports, 2018, 32(4): 545-548.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.007  或          http://www.mater-rep.com/CN/Y2018/V32/I4/545
1 Stephen M, Catherine N, Brenda M, et al. Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption[J].Journal of Hazardous Materials,2011,192(2):922.
2 Pirzada T, Arvidson S A, Saquing C D, et al. Hybrid silica-PVA nanofibers via sol-gel electrospinning[J].Langmuir,2012,28(13):5834.
3 Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocompo-sites[J].Composites Science & Technology,2003,63(15):2223.
4 Meng Depeng, Wu Juntao. Adsorption and seperation materials produced by electrospinning[J].Progress in Chemistry,2015,28(5):657(in Chinese).
孟德芃,吴俊涛.静电纺丝法制备新型吸附分离材料[J].化学进展,2015,28(5):657.
5 Agarwal S, Greiner A, Wendorff J H. Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications[J].Advanced Functional Materials,2010,19(19):2863.
6 Yuan W, Zhang K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J].Langmuir,2012,28(43):15418.
7 Wen Qian. Preparation and characterization of β-cyclodextrin nanocomposite materials[D].Changchun: Jilin University,2014(in Chinese).
文茜.β-环糊精纳米复合材料的制备及其性能研究[D].长春:吉林大学,2014.
8 Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins[J].European Journal of Pharmaceutics & Biopharmaceutics Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E V,2005,61(3):115.
9 Bae J R. Ultrasonic relaxation for complexation reaction between β-cyclodextrin and butanoic acid in aqueous solution[J].Journal of the Acoustical Society of Korea,2012,31(2):100.
10 Prabaharan M, Mano J F. Chitosan derivatives bearing cyclodextrin cavitiesas novel adsorbent matrices[J].Carbohydrate Polymers,2006,63(2):153.
11 Zhao R, Wang Y, Li X, et al. Synthesis of beta-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene blue[J].ACS Applied Materials & Interfaces,2015,7(48):26649.
12 Liu Chuochuo. Preparation and antibacterial property of polyethersulfone hybrid ultrafiltration membranes containing immobolized lyzosyme[D].Zhengzhou:Zhengzhou University,2014(in Chinese).
刘绰绰.负载溶菌酶的聚醚砜杂化超滤膜制备及其抗菌性能研究[D].郑州:郑州大学,2014.
13 Kang G D, Cao Y M. Development of antifouling reverse osmosis membranes for water treatment:A review[J].Water Research,2012,46(3):584.
14 Texter J. Graphene oxide and graphene flakes as stabilizers and dispersing aids[J].Current Opinion in Colloid & Interface Science,2015,20(5-6):454.
15 Tang C, Saquing D, Harding J R, et al. In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers[J].Macromolecules,2010,43(2):630.
16 Zhang Z, Xu F, Yang W, et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J].Chemical Communications,2011,47(22):6440.
17 GBT 20944.1-2007纺织品 抗菌性能的评价 第1部分:琼脂扩散法[S].北京:中国标准出版社,2007.
18 Li L, Hsieh YL. Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid)[J].Polymer,2005,46(14):5133.
19 Qin Jing. Preparation of graphene oxide nano-composite membrane and study on its anti-biofouling property[D].Jinan:Shandong University,2015(in Chinese).
秦静.氧化石墨烯纳米复合膜的制备及抗污染性能研究[D].济南:山东大学,2015.
20 Liu S, Hu M, Zeng T H, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets[J].Langmuir,2012,28(33):12364.
21 Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J].Journal of Nanoparticle Research,2010,12(5):1531.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[3] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[4] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[5] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[6] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[7] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[8] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[9] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[10] 陈志, 孙聪, 朱亚楠, 葛明桥. 熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能[J]. 《材料导报》期刊社, 2018, 32(8): 1333-1337.
[11] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[12] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[13] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[14] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[15] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed