Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23040151-8    https://doi.org/10.11896/cldb.23040151
  高分子与聚合物基复合材料 |
柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究
贾震震1,2, 李一鸣1,2, 郑智宏3, 张静云3, 程璇1, 郑煜铭2, 邵再东2,*
1 厦门大学材料学院,福建 厦门 361005
2 中国科学院城市环境研究所中国科学院城市污染物转化重点实验室,福建 厦门 361021
3 福建省袋滤材料与技术重点实验室(厦门中创环保科技股份有限公司),福建 厦门 361101
Study on the Preparation of Flexible Electrospun Carbon Nanofibers with High Specific Surface Area and Their Adsorption Performance for VOCs
JIA Zhenzhen1,2, LI Yiming1,2, ZHENG Zhihong3, ZHANG Jingyun3, CHENG Xuan1, ZHENG Yuming2,
SHAO Zaidong2,*
1 College of Materials, Xiamen University, Xiamen 361005, Fujian, China
2 CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
3 Fujian Provincial Key Lab of Bag Filter Materials and Technology (Xiamen Zhongchuang Environmental Technology Co., Ltd.), Xiamen 361101, Fujian, China
下载:  全 文 ( PDF ) ( 11974KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米纤维的直径小,比表面积大,是一种高效的气体吸附材料。但是,碳纳米纤维通常需要经过过程复杂、成本较高并且环境影响大的活化热处理工艺来提高其多孔特性。本研究以聚酰胺酸(PAA)和聚甲基丙烯酸甲酯(PMMA)为原料,通过共混静电纺丝和热亚胺化获得聚酰亚胺(PI)纳米纤维,再经一步炭化法制备高比表面积的柔性碳纳米纤维,并系统分析碳化条件对柔性PI/PMMA基碳纳米纤维的形貌特征、物理化学性质和VOCs吸附性能的影响规律。结果表明:1 000 ℃碳化条件下制备的PI/PMMA基碳纳米纤维具有最大的比表面积(1 047.5 m2·g-1)和孔容(0.61 cm3·g-1)。吸/脱附动力学实验表明,PI/PMMA基碳纳米纤维比表面积和微孔体积的增大显著加快了吸/脱附过程中甲苯的传质速率。静态吸附实验表明,PI/PMMA基碳纳米纤维在25 ℃下对甲苯的吸附容量高达6.25 mmol·g-1,吸附等温线较符合Langmuir模型,对苯、丙酮、三氯甲烷和甲醇等典型挥发性有机化合物(VOCs)同样具有良好的吸附性能,表明其是一种潜在的优异的VOCs吸附材料。动态吸附实验显示,PI/PMMA基碳纳米纤维对1 137 mg·m-3的甲苯气体的吸附容量高达2.97 mmol·g-1,经过五次吸脱附循环,其吸附量仍保持在初始值的91%,表现出优异的循环稳定性。本研究制备的柔性PI/PMMA基碳纳米纤维是一种性能优异的VOCs吸附材料,在低浓度VOCs去除方面具有很大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾震震
李一鸣
郑智宏
张静云
程璇
郑煜铭
邵再东
关键词:  静电纺丝  碳纳米纤维  VOCs  气体吸附    
Abstract: Carbon nanofibers have the advantages of small fiber diameter and large specific surface area, making them an efficient gas adsorption material. However, carbon nanofibers with enhanced porous properties are often prepared via a complex carbonization and activation process, which is costly and time consuming. In this study, highly porous polyimide (PI) polymethyl methacrylate (PMMA) based flexible carbon nanofibers were directly prepared by one-step carbonization. The PI nanofibers were obtained through co-electrospinning polyamide acid (PAA) and PMMA followed by thermal imidization. The effects of carbonization conditions on the morphological characteristics, physicochemical properties and volatile organic chemicals (VOCs) adsorption performance of flexible PI/PMMA-based carbon nanofibers were systematically analyzed. The results showed that the PI/PMMA-based carbon nanofibers prepared at 1 000 ℃ had the largest specific surface area (1 047.5 m2·g-1) and pore volume (0.61 cm3·g-1). The adsorption/desorption kinetics showed that the increase of specific surface area and the number of micropores in PI/PMMA-based carbon nanofibers significantly accelerated the mass transfer rate of toluene during the adsorption/desorption process. The results of static adsorption experiments showed that the adsorption capacity of the prepared PI/PMMA-based carbon nanofibers for toluene was as high as 6.25 mmol·g-1 at 25 ℃, and the adsorption isotherms were well fitted with Langmuir model. In addition, the PI/PMMA-based carbon nanofibers also had good adsorption performance for various other typical VOCs such as benzene, acetone, chloroform and methanol. The adsorption capacity for 1 137 mg·m-3 toluene analyzed via dynamic adsorption was as high as 2.97 mmol·g-1. After 5 cycles of adsorption and desorption, the adsorption capacity remained at 91%, indicating an excellent cycle stability. This flexible PI/PMMA-based carbon nanofibers with excellent VOCs adsorption performance are promising for the removal of low concentration VOCs.
Key words:  electrostatic spinning    carbon nanofiber    VOCs    gas adsorption
发布日期:  2024-10-12
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2022YFC3702800);福建省袋滤材料与技术重点实验室(厦门中创环保科技股份有限公司)开放课题
通讯作者:  *邵再东,通信作者,中国科学院城市环境研究所助理研究员。主要从事二氧化硅气凝胶、静电纺纳米纤维等功能材料的制备及环境净化应用研究,在国内外期刊发表文章20多篇,授权发明专利7项。zdshao@iue.ac.cn   
作者简介:  贾震震,厦门大学2021级硕士研究生,于2022年5月在中国科学院城市环境研究所联合培养学习,主要研究方向为气体吸附。
引用本文:    
贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
JIA Zhenzhen, LI Yiming, ZHENG Zhihong, ZHANG Jingyun, CHENG Xuan, ZHENG Yuming,
SHAO Zaidong. Study on the Preparation of Flexible Electrospun Carbon Nanofibers with High Specific Surface Area and Their Adsorption Performance for VOCs. Materials Reports, 2024, 38(18): 23040151-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040151  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23040151
1 Li X, Zhang L, Yang Z, et al. Separation and Purification Technology, 2020, 235, 116213.
2 Li X, Niu Y, Su H, et al. Catalysis Letters, 2021, 152(6), 1801.
3 De Gennaro G, Dambruoso P R, Loiotile A D, et al. Environmental Chemistry Letters, 2014, 12(4), 467.
4 Gallagher M, Wysocki C J, Leyden J J, et al. British Journal of Dermatology, 2008, 159(4), 780.
5 Fan X D. Cleaning World, 2022, 38(8), 73(in Chinese).
樊祥德. 清洗世界, 2022, 38(8), 73.
6 Ge J C, Choi N J. Journal of Cleaner Production, 2019, 217, 388.
7 Liu H, Yu Y, Shao Q, et al. Separation and Purification Technology, 2019, 228, 115755.
8 Shi R, Chen H, Liu B, et al. Materials Chemistry and Physics, 2022, 286, 126186.
9 Lu S, Liu Q, Han R, et al. Journal of Environmental Sciences, 2021, 105, 184.
10 Zhang G, Liu Y, Zheng S, et al. Journal of Hazardous Materials, 2019, 364, 317.
11 He X Y, Wang Z L. Chemical Design Communications, 2022, 48(7), 49(in Chinese).
何晓云, 王占良. 化工设计通讯, 2022, 48(7), 49.
12 Li X, Zhang H, Wei J, et al. Microporous and Mesoporous Materials, 2020, 303, 110190.
13 Pui W K, Yusoff R, Aroua M K. Reviews in Chemical Engineering, 2019, 35(5), 649.
14 Wang Y, Liu M, Chen W, et al. Journal of Alloys and Compounds, 2019, 786, 149.
15 Sui H, Wang Z, He L, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 51.
16 Zhao X S, Ma Q, Lu G Q M. Energy & Fuels, 1998, 12(6), 1051.
17 Amarl Junior M A, Matsushima J T, Rezende M C, et al. Journal of Aerospace Technology and Management, 2017, 9(4), 423.
18 Tan S, Kraus T J, Li Oakey K D. Fuel, 2019, 245, 148.
19 Nan D, Liu J, Ma W. Chemical Engineering Journal, 2015, 276, 44.
20 Zhang R, Wang L, Zhao J, et al. ACS Sustainable Chemistry & Engineering, 2018, 7(1), 632.
21 Wang J, Kaskel S. Journal of Materials Chemistry, 2012, 22(45), 23710.
22 Katepalli H, Bikshapathi M, Sharma C S, et al. Chemical Engineering Journal, 2011, 171(3), 1194.
23 Abeykoon N C, Bonso J S, Ferraris J P. RSC Advances, 2015, 5(26), 19865.
24 Li Z, Zhang J T, Chen Y M, et al. Nature Communications, 2015, 6, 8850.
25 Chung G S, Jo S M, Kim B C. Journal of Applied Polymer Science, 2005, 97(1), 165.
26 Wang J, Yang Y, Kang F. Electrochimica Acta, 2015, 168, 271.
27 Wang S, Xia L, Yu L, et al. Advanced Energy Materials, 2016, 6(7), 1502217.
28 Kim C, Choi Y O, Lee W J, et al. Electrochimica Acta, 2004, 50(2-3), 883.
29 Nan D, Wang J G, Huang Z H, et al. Electrochemistry Communications, 2013, 34, 52.
30 Dou S, Ke X X, Zhong L B, et al. Separation and Purification Technology, 2022, 295, 121341.
31 Langmuir I. Journal of the American Chemical Society, 1917, 183(1), 102.
32 Freundlich H M F. The Journal of Physical Chemistry A, 1906, 57, 385.
33 Wang X, Chen L L, Guo Q J. Chemical Engineering Journal, , 2015, 260, 573.
34 Zhang Z X, Du H D, Li J, et al. New Carbon Materials, 2015, 30(4), 289(in Chinese).
张振兴, 杜鸿达, 李佳, 等. 新型炭材料, 2015, 30(4), 289.
35 McCusker L B, Liebau F, Engelhardt G. Pure and Applied Chemistry, 2001, 73(2), 381.
36 Chu F, Zheng Y, Wen B, et al. RSC Advances, 2018, 8(5), 2426.
37 Yin T, Meng X, Wang S, et al. Separation and Purification Technology, 2022, 280, 119634.
38 Rico-Barragán A A, lvarez J R, Pioquinto-García S, et al. Sustainable Production and Consumption, 2023, 40, 159.
39 Cheng T, Bian Y, Li J, et al. Fuel, 2023, 334, 126452.
40 Seo H O, Kim D H, Kim K D, et al. Adsorption, 2013, 19(6), 1181.
41 Li J J, Ma X W, Wu H, et al. Energy & Fuels, 2021, 35(6), 5090.
42 Vellingiri K, Kumar P, Deep A, et al. Chemical Engineering Journal, 2017, 307, 1116.
43 Wang Y, Li Z, Tang C, et al. Environmental Science:Nano, 2019, 6(10), 3113.
44 Yang X, Yi H, Tang X, et al. Journal of Environmental Sciences, 2018, 67, 104.
45 Yue X, Wang S, Li D F, et al. Industrial & Engineering Chemistry Research, 2023, 62(12), 5408.
46 Li S. Journal of Porous Materials, 2022, 30(2), 421.
47 Zhou H, Gao S, Zhang W, et al. RSC Advances, 2019, 9(13), 7196.
48 Song M, Yu L, Song B, et al. Environmental Science and Pollution Research, 2019, 26(22), 22284.
49 Hong G B, Ruan R T, Chang C T. Chemical Engineering Journal, 2013, 215-216, 472.
50 Khoshakhlagh A H, Golbabaei F, Beygzadeh M, et al. RSC Advances, 2020, 10(58), 35582.
[1] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[2] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[3] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[4] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[5] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[6] 常郗文, 龙永双, 仪明伟, 王晨, 肖月. 道路沥青挥发性有机化合物减排材料的研究进展[J]. 材料导报, 2023, 37(20): 22040399-16.
[7] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[8] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[9] 周鉴澄, 林骏, 赵小敏, 陈丹青, 陈国华. 静电纺丝法制备定向导液复合纤维材料的研究进展[J]. 材料导报, 2023, 37(16): 21100141-7.
[10] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[11] 齐致雍, 高凤雨, 唐晓龙, 易红宏, 杜影. 核壳催化剂用于大气污染控制的研究进展[J]. 材料导报, 2023, 37(10): 21060234-12.
[12] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[13] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[14] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[15] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed