Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21020035-5    https://doi.org/10.11896/cldb.21020035
  高分子与聚合物基复合材料 |
静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜
王琪1, 李可1, 吴益华1,2, 朱志刚1,3, 施惟恒1,4,*
1 上海第二工业大学能源与材料学院,上海 201209
2 上海第二工业大学资源循环科学与工程中心,上海 201209
3 上海理工大学医疗器械与食品学院,上海 200093
4 德雷克塞尔大学材料科学与工程系,宾州 费城 19104
Water-Resistant CsPbBr3 Nanocrystal-Polymethylmethacrylate Composite Fibrous Membranes Prepared by Electrostatic Spinning
WANG Qi1, LI Ke1, WU Yihua1,2, ZHU Zhigang1,3, SHIH Weiheng1,4,*
1 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
2 Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
3 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
4 Department of Materials Science and Engineering, Drexel University, Philadelphia 19104, PA, USA
下载:  全 文 ( PDF ) ( 13296KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,全无机钙钛矿卤化铅铯CsPbX3(X=Cl,Br,I)纳米晶因具有量子产率高、荧光波长可调、半峰宽窄等优异的光学性能,成为探索光电子器件的优秀候选材料。虽然此材料的优点突出,在发光二极管(LEDs)、光电探测器、太阳能电池和下一代显示设备等方面应用广泛,但由于其稳定性差,实际应用受到限制。本工作采用静电纺丝技术,对同时溶解了纳米晶前驱体和聚甲基丙烯酸甲酯(PMMA)的N,N-二甲基甲酰胺(DMF)溶液进行静电纺丝,通过一步法在PMMA薄膜中原位生成溴化铅铯(CsPbBr3)纳米晶。结果表明,CsPbBr3纳米晶被很好地包裹在聚合物纤维中,且分散非常均匀,在紫外灯照射下可以发出清晰且均匀的绿色荧光。纤维薄膜在水中放置超过四个月后,仍然能保持初始发光强度的70%,具有非常好的水稳定性。与传统的合成钙钛矿后混入纤维前驱体生成风干膜(ADF)的两步法相比,一步法制备钙钛矿纳米晶复合薄膜不仅为制备高稳定性钙钛矿提供了新的方法,而且使用的原材料少,工艺更简单。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王琪
李可
吴益华
朱志刚
施惟恒
关键词:  全无机钙钛矿  静电纺丝  原位生长  纤维薄膜  溴化铅铯    
Abstract: All-inorganic perovskite cesium-based lead halide CsPbX3 (X=Cl, Br, and I) nanocrystals have excellent optical properties such as high quantum yield, adjustable emission wavelength and narrow full width at half maximum (FWHM). Consequently, all-inorganic perovskite has become an excellent candidate for optoelectronic devices, such as light-emitting diodes (LEDs), photodetectors, solar cells and next-generation display devices. Although there are many advantages of this material, the poor stability in ambient condition greatly limits its practical applications. In this work, the precursors of nanocrystalline CsPbBr3 and polymethyl methacrylate (PMMA) were mixed together in N,N-dimethylformamide (DMF) and subsequently electrostatically spun to generate CsPbBr3@ PMMA composite eletrospun fibrous membrane (EFM) in situ. It is shown that the CsPbBr3 nanocrystals are well wrapped within the polymer fibers and are uniformly distributed. The emitted fluorescence light under excitation by ultraviolet light is uniform as well. The composite EFM can maintain 70% of the original photoluminescence intensity after being placed in deionized water for more than four months, showing excellent water stability. Compared with the traditional two-step method of using synthesized perovskite and then mixing in fiber precursor to generate air dried film (ADF), this one-step method for preparing the perovskite nanocrystal composite film not only provides a new method for preparing highly stable perovskite nanocrystalline polymer composite films but also uses fewer raw materials and the process is simple.
Key words:  all-inorganic perovskite    electrostatic spinning    in-situ growth    fibrous membrane    cesium-based lead bromide
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  TB333  
基金资助: 上海第二工业大学研究生项目(EGD19YJ0071)
通讯作者:  *shihwh@drexel.edu   
作者简介:  王琪,2018年6月毕业于南通大学地理科学学院,获学士学位。在上海第二工业大学海外名师施惟恒教授的指导下攻读硕士学位,主要研究方向为全无机钙钛矿与高分子聚合物复合材料的制备及性能研究。发表学术论文2篇。施惟恒, 1984 年毕业于美国俄亥俄州立大学物理系,获博士学位。目前是美国宾州德雷克塞尔大学材料与工程学系教授, 兼任上海第二工业大学海外名师。主要研究方向为光电与压电材料的制备与应用。发表多篇学术论文。
引用本文:    
王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
WANG Qi, LI Ke, WU Yihua, ZHU Zhigang, SHIH Weiheng. Water-Resistant CsPbBr3 Nanocrystal-Polymethylmethacrylate Composite Fibrous Membranes Prepared by Electrostatic Spinning. Materials Reports, 2022, 36(16): 21020035-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020035  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21020035
1 Yang D, Cao M, Zhong Q, et al. Journal of Materials Chemistry C, 2019, 7(4), 757.
2 Faheem M B, Khan B, Feng C, et al. ACS Energy Letters,2019,5(1),290.
3 Protesescu L, Yakunin S, Bodnarchu M I, et al. Nano Letters, 2015, 15(6), 3692.
4 Wu Y, Wei Y, Huang Y, et al. Nano Research, 2016, 10(5), 1584.
5 Liang J, Han X, Yang J H, et al. Advanced Materials, 2019, 31(51), e1903448.
6 Li X M, Wu Y, Zhang S L, et al. Advanced Functional Materials, 2016, 26(15), 2584.
7 Rao L, Tang Y, Yan C, et al. Journal of Materials Chemistry C, 2018, 6(20), 5375.
8 Wang B, Zhang C, Huang S, et al. ACS Applied Materials & Interfaces, 2018, 10(27), 23303.
9 Liao H, Guo S, Cao S, et al. Advanced Optical Materials, 2018, 6(15), 1800346.
10 Zhou Y, Chen J, Bakr O M, et al. Chemistry of Materials, 2018, 30(19), 6589.
11 Yang M, Yu J, Jiang S, et al. Optics Express, 2018, 26(16), 20649.
12 Wang Y, He J, Chen H, et al. Advanced Materials, 2016, 28(48), 10710.
13 Huang S, Li Z, Kong L, et al. Journal of the American Chemical Society, 2016, 138(18), 5749.
14 Im J H, Kim H S, Park N G. APL Materials, 2014, 2(8), 591.
15 Longo G, Pertegás A, Martínez-sarti L, et al. Journal of Materials Chemi-stry C, 2015, 3(43), 11286.
16 Zhou Q, Bai Z, Lu W G, et al. Advanced Materials, 2016, 28(41), 9163.
17 Chen C S, Li D, Wu Y H, et al. Nanotechnology, 2020, 31, 225602.
18 Li Q F, Wang J T, Tian B, et al. European Journal of Inorganic Chemistry, 2018, 38, 4215.
19 Lu X, Hu Y, Guo J Z, et al. Advanced Science, 2019, 6(22), 1901694.
21 Szewczyk P, Ura D, Metwally S, et al. Polymers, 2018, 11(1),34.
20 Wu X J, Xu Y, Hu Y, et al. Nature Communications, 2018, 9(1), 4573.
22 Li X, Xue Z, Luo D,et al. Science China Materials, 2018, 61, 363.
[1] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[2] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[3] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[4] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[5] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[6] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[7] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[8] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[9] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[10] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[11] 刘壮, 陈建林, 黄才友, 彭卓寅, 何建军, 陈荐. 全无机CsPbBr3钙钛矿太阳电池的研究进展[J]. 材料导报, 2021, 35(11): 11039-11056.
[12] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[13] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[14] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[15] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed