Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23057-23067    https://doi.org/10.11896/cldb.20060225
  无机非金属及其复合材料 |
纤维气凝胶的分类、制备工艺及应用现状
朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英
大连工业大学纺织与材料工程学院,大连116034
Classification, Preparation Process and Application of Fibre Aerogel: a Review
ZHU Haotong, LIU Lingwei, YAN Ming, ZHANG Hong, GUO Jing, XIA Ying
School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034, China
下载:  全 文 ( PDF ) ( 15255KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶具有高孔隙率、低密度、高比表面积和低热导率等优异性能,广泛应用于隔热、隔音和吸附等领域,已经成为21世纪以来新型纳米多孔材料的研究热点。
但是由于气凝胶的网络结构导致其缺点也十分突出,首先,气凝胶的力学性能较差、脆性大,使其加工、处理变得困难,且易产生粉尘污染;其次,由于原料和制备工艺等限制,气凝胶的价格昂贵;另外往往只能静态成型难以连续生产,形态多是与模具或反应相对应的块状或粉末状,不能满足更多的应用。因此提高气凝胶的力学性能、寻找更简单廉价的合成方式和拓宽气凝胶形态等成为亟待解决的问题。
设计制备纤维态气凝胶和纤维复合气凝胶是解决上述不足的方法之一。可通过湿法纺丝、管中浇铸、纤维状基材自组装、静电纺丝、纤维热解碳化、原纤化堆积等成型方法和超临界、冷冻、常压等干燥工艺,制备无机纤维气凝胶、有机纤维气凝胶、有机/无机杂化纤维气凝胶和纤维复合气凝胶材料,实现气凝胶的骨架结构的增强、纤维态气凝胶的成型和连续生产,可避免附聚并方便回收处理,还可设计调控特殊的中空结构和分级孔结构,或利用嵌入纤维的独特物理、化学特性,在保持气凝胶原有优秀性能的基础上,赋予其新的性能。
本文对近五年纤维气凝胶及纤维复合气凝胶材料的研究现状进行了概览,介绍了纤维气凝胶的类型、制备方法及原理,说明了纤维气凝胶在吸附、隔热、传感、能量存储、催化和微波屏蔽等传统及新兴领域的应用,并提出了未来可尝试的研究方向,对纤维气凝胶的改进提出一些建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱浩彤
刘玲伟
闫铭
张鸿
郭静
夏英
关键词:  气凝胶纤维  纤维气凝胶复合材料  湿法纺丝  管中浇铸  纤维状基材自组装  静电纺丝  纤维热解碳化  原纤化堆积    
Abstract: Aerogel has excellent properties such as high porosity, low density, high specific surface area and low thermal conductivity. It is widely used in the fields of heat insulation, sound insulation and adsorption, which has become a research hotspot of new nanoporous materials since the 21st century.
However, the network structure of aerogel also causes very prominent disadvantages. First of all, its poor mechanical properties and brittleness makes it difficult to process and treat, and easy to produce dust pollution. Secondly, aerogels are expensive due to restrictions on raw materials and preparation techniques. In addition, the samples of aerogels are always formed statically rather than continuously, the shape of which is general block or powder according to the mold or reaction. Therefore, developing the high mechanical properties, finding a facile and cheap synthesis methods, and broadening the morphology of aerogel remains challenging.
Designing and preparing fibrous aerogels and fiber composite aerogels is one of the methods to solve the aforementioned problems. For example, the inorganic fiber aerogels, organic aerogels, organic/inorganic hybrid fibers aerogels and fiber composite aerogels can be prepared by wet-spinning, in-tube casting, fiber self-assembly, electrostatic-spinning, fiber pyrolysis and carbonization, fibrous deposition and other forming me-thods and drying process including supercritical pressure, freezing and atmospheric drying and so on. Therefore, the required performance of aerogels such as the skeleton structure enhancement of aerogels and fibers,the formation and continuous production of aerogels can be realized, which can avoid agglomeration and facilitate to recycle. Besides, the aerogels can be endowed with new properties on the basis of maintaining excellent original properties by designing special hollow structure and hierarchical pore structure, or using the unique physical/chemical characteristics of the embedded fibers.
In general, we summarize the research status of fiber aerogels and fiber composite aerogel materials in the past five years, introduces the types, characteristics, preparation methods and principles of fiber aerogels, and explains the advantages of fiber aerogels in adsorption, heat insulation, applications in traditional and emerging fields such as sensing, energy storage, catalysis and microwave shielding. Furthermore, we also point the possible research directions in future, and propose some suggestions for the improvement of fiber aerogels.
Key words:  aerogel fiber    fiber aerogel composite    wet spinning    cast in tube    fibrous substrate self-assembly    electrospinning    fiber pyrolysis carbonization    fibrillation accumulation
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TQ342  
基金资助: 辽宁省教育厅基础研究项目(J2019018);大连市科技创新基金项目(2019J12GX047);辽宁省“兴辽英才计划”(XLYC1906017)
通讯作者:  zhang_hong1234@sina.com   
作者简介:  朱浩彤,2018年6月毕业于大连工业大学,获得工学学士学位。现为大连工业大学纺织与材料工程学院硕士研究生,在张鸿教授的指导下进行研究。目前主要研究领域为气凝胶纤维增强。
张鸿,大连工业大学纺织与材料工程学院教授,博士研究生导师。2008年12月毕业于大连理工大学土木水利学院材料学专业,取得博士学位。中国纺织工业联合会“纺织之光”教学名师。国家科技项目评审专家、中国轻工业联合会科技项目评审专家、辽宁省科技项目评审专家、大连市科技项目评审专家。主要学术研究方向为化学纤维和生物质纤维材料成形与改性,相变功能、吸附功能、传感功能等功能与智能高分子材料合成与制备。主持辽宁省高等学校产业技术研究院重大项目、辽宁省自然科学基金项目、辽宁省基础研究项目、大连市创新基金项目、大连市科技攻关项目等纵向项目10余项,主持横向合作开发项目3项。已在Carbohydrate Polymers、Solar Energy Materials and Solar Cells、International Journal of Biological Macromolecules、《高等学校化学学报》等刊物上发表论文60余篇,其中被SCI、EI收录30多篇。已获授权发明专利13项。参编《高分子材料改性》《高分子材料专业实验》等教材2部。获得中国轻工业联合会科技发明一等奖1项、辽宁省科技发明二等奖1项和大连市科技发明三等奖1项。
引用本文:    
朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
ZHU Haotong, LIU Lingwei, YAN Ming, ZHANG Hong, GUO Jing, XIA Ying. Classification, Preparation Process and Application of Fibre Aerogel: a Review. Materials Reports, 2021, 35(23): 23057-23067.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060225  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23057
1 Husing N, Schubert U, Angewandte Chemie International Edition, 1998, 37(1-2), 22.
2 Lazovski G, Bar G, Ji B, et al. Journal of Supercritical Fluids, 2019, 159, 104496.
3 Zhou L, Zhai Y, Yang M B, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(18), 15617.
4 Ren Sue, Hu Li, Li Xiutao, et al. Ceramics International, 2020, 46(5), 6326.
5 Cao J, Ma Y. Energy Sources, 2020, 42(9), 1108.
6 Wang Jintao, Liu Shuyu. Separation and Purification Technology, 2019, 221, 303.
7 Su L, Wang H, Niu M, et al. ACS Nano, 2018, 12(4), 3103.
8 Si M, Junyan Z, Wenping C, et al. Microporous and Mesoporous Mate-rials, 2019, 273, 294.
9 Li M, Zong L, Yang W, et al. Advanced Functional Materials, 2019, 29(32),1901798.
10 Huang Jieyu, Li Dawei, Zhao Min, et al. Chemical Engineering Journal, 2019, 373, 1357.
11 Zhao H B, Yuan L, Fu Z B, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9917.
12 Linhares T, Amorim M T P D, Duraes Luisa, et al. Journal of Materials Chemistry A, 2019, 7(40), 22768.
13 Yang H W, Wang Z Q, Liu Z, et al. Polymers, 2019,11(11),1899.
14 Si Meng,Huang Xiyue,Wang Xingping, et al. In: Chinese Materials Conference (CMC), Yinchuan, 2017 pp. 753.
15 Wang Z Q, Yang H W, Li Y, et al. ACS Applied Materials and Interfaces, 2020, 12(13), 15726.
16 Stergar J, Maver U. Journal of Sol-Gel Science and Technology, 2016, 77(3), 738.
17 Huang D, Guo C. Materials Science-Medziagotyra, 2017, 23(4), 335.
18 Li W, Xu F, Liu W, et al. Composites Part A-Applied Science and Manufacturing, 2018, 108, 107.
19 Liu Qianli, Li Min, Gu Yizhuo, et al. Nanoscale, 2014, 6(8), 4338.
20 Guo F, Jiang Y, Xu Z, et al. Nature Communications, 2018, 9(1), 881.
21 Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25(18), 2554.
22 Su L, Wang H, Niu M, et al. ACS Nano, 2018, 12(4), 3103.
23 Su L, Wang H, Niu M, et al. Science Advances, 2020, 6(26), eaay6689.
24 Si Y, Wang X, Dou L, et al. Science Advances, 2018, 7(4), eaas8925.
25 Cao X, Zhang J, Chen S, et al. Advanced Functional Materials, 2020, 2003618.
26 Li Xiubing, Yang Siwei, Sun Jing, et al. Carbon, 2014, 78, 38.
27 Chatterjee Soumyajyoti, Ke Wei-Ting, Liao Ying-Chih. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 261.
28 Liu Ruili, Dong Xue, Xie Shuangtian, et al. Chemical Engineering Journal, 2019, 360, 464.
29 Wu Xiaohan, Hong Guo, Zhang Xuetong. Langmuir, 2019, 35(10), 3814.
30 Duanchao W, Houyong Y, Xuemeng F, et al. ACS Applied Materials & Interfaces, 2018, 10(24), 20755.
31 Song J, Chen C, Yang Z, et al. ACS Nano, 2018, 12(1), 140.
32 Schimper C B, Pachschwoell P S, Hettegger H, et al. Molecules, 2020, 25(7), 1695.
33 Chen Zehong, Zhuo Hao, Hu Yijie, et al. Advanced Functional Mate-rials, 2020, 30(17), 1910292.
34 Cheng Q, Liu Y, Lyu J, et al. Journal of Materials Chemistry A, 2020, 8(28), 14243.
35 Li J, Wang J, Wang W, et al. Molecules, 2019, 24(9), 1821.
36 Suzuki Y, Uchimura A, Tabata I, et al. AATCC Journal of Research, 2019, 6(1),28.
37 Zhou L, Zhai Y, Yang M B, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(18), 15617.
38 Quoc Ba Thai, Son Truong Nguyen, Duong Khanh Ho, et al. Carbohydrate Polymers, 2020, 228, 115365.
39 Salimian S, Zadhoush A, Naeimirad M, et al. Polymer Composites, 2018, 39(10), 3383.
40 Si Y, Yu J, Tang X, et al. Nature Communications, 2014, 5, 5802.
41 He J, Li X, Su D, et al. Journal of the European Ceramic Society, 2015, 36(6), 1487.
42 Mazrouei-Sebdani Z, Khoddami A, Hadadzadeh H, et al. RSC Advances, 2015, 5(17), 12830.
43 Li X F, Feng J Z, Jiang Y G, et al. Ceramics International, 2019, 45(14), 17064.
44 Si M, Junyan Z, Wenping C, et al. Microporous and Mesoporous Mate-rials, 2019, 273, 294.
45 Chihan M, Hong Z, Sen Z, et al. Journal of Sol-Gel Science and Techno-logy, 2018, 87(3), 704.
46 Mitropoulos A, Burpo F, Nguyen C, et al. Materials, 2019, 12(6), 894.
47 Yang H, Wang Z, Liu Z, et al. Polymers, 2019, 11(11), 1899.
48 Lamberti Andrea, Gigot Arnaud, Bianco Stefano, et al. Carbon, 2016, 105, 649.
49 Serrapede Mara, Rafique Amjid, Fontana Marco, et al. Carbon, 2019, 144, 91.
50 Christiansen L, Jensen L R, Fojan P. Journal of Composite Materials, 2019, 53(17), 2361.
51 Jiru J, Chaoxia W. Materials Science & Engineering C-Materials for Biological Applications, 2019, 94, 965.
52 Cao J, Ma Y. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2020, 42(9), 1108.
53 Zhang X, Wang Y, Zhao J, et al.ACS Sustainable Chemistry & Enginee-ring, 2016, 4(8), 4321.
54 Zheng Q, Zhang H, Mi H, et al.Nano Energy, 2016, 26, 504.
55 Zhang X, Zhang R, Zhao C.Journal of Porous Materials, 2020, 7(5), 1535.
56 Shan S. A Research of fabrication, modification and doping of graphene aerogel in the application of supercapacitor. Master's Thesis, University of Electronic Science and Technology of China, China, 2020 (in Chinese).
单双.超级电容器应用中石墨烯气凝胶制备、改性与掺杂的研究.硕士学位论文,电子科技大学,2020.
57 Li Chao, Ding Yan-Wei, Hu Bi-Cheng, et al. Advanced Materials, 2020, 32(2), 1904331.
58 Markevicius G, Ladj R, Niemeyer P, et al. Journal of Materials Science, 2017, 52(4), 2210.
59 Meng S, Zhang J Y, Xu W, et al. Science China-Technological Sciences, 2019, 62(6), 958.
60 Shao Yiqin, Xu Fujun, Li Wei, et al. Composites Part A Applied Science And Manufacturing, 2016, 88, 98.
61 Liu Zengwei, Lyu Jing, Fang Dan, et al. ACS Nano, 2019, 13(5), 5703.
62 Li Z, Cheng X, He S, et al. Composites Part A Applied Science and Manufacturing, 2016, 84, 316.
63 Li Zhi, Gong Lunlun, Cheng Xudong, et al. Materials & Design, 2016, 99, 349.
64 Chen Meiling, Wang Daolin, Yue Mingli, et al. Macromolecular Materials And Engineering, 2018, 303(10), 1800229.
65 Björn S, Meinert T, David B, et al. Chemie Ingenieur Technik, 2016, 88(10), 1501.
66 Mo L T, Pang H W, Tan Y, et al. Chemical Engineering Journal, 2019, 378, 122157.
67 Geng B, Wang H, Wu S, et al.ACS Sustainable Chemistry & Enginee-ring, 2017, 5(12), 11715.
68 Chen W, Li Q, Wang Y, et al. Chemsuschem, 2014, 7(1), 154.
69 Zhou Jian, Hsieh You-Lo. ACS Applied Materials & Interfaces, 2018, 10(33), 27902.
70 Lai F, Miao Y E, Huang Y, et al. Journal of Materials Chemistry A, 2016, 4(41), 15861.
71 Li G, Hong G, Dong D, et al. Advanced Materials, 2018, 30(30), 1801754.
72 Ellebracht N C, Jones C W. Carbohydrate Polymers, 2020, 233, 115825.
73 Wang M C, Bike Z, Ding JQ et al. ACS Sustainable Chemistry & Enginee-ring, 2020, 8(12), 4983.
74 Wu Xiaohan, Hong Guo, Zhang Xuetong. Langmuir, 2019, 32(10), 3814.
[1] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[2] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[3] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[4] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[5] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[6] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[7] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[8] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[9] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[10] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[11] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[12] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[13] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[14] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[15] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed