Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12158-12162    https://doi.org/10.11896/cldb.19060142
  高分子与聚合物基复合材料 |
电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究
王艳芝1,2,3, 张玲杰3,4, 张一风1,2, 张旺玺3,4
1 中原工学院纺织学院,郑州 451191
2 河南省纺织服装产业协同创新中心,郑州 451191
3 河南省金刚石碳素复合材料工程技术研究中心,郑州 451191
4 中原工学院材料与化工学院,郑州 451191
Study on Preparation, Structure and Properties of Polyacrylonitrile/Boron Nitride Hybrid Composite Fibers via Electrospinning
WANG Yanzhi1,2,3, ZHANG Lingjie3,4, ZHANG Yifeng1,2, ZHANG Wangxi3,4
1 School of Textile, Zhongyuan University of Technology, Zhengzhou 451191, China
2 Collaborative Innovation Center of Textiles and Fashion, Zhengzhou 451191, China
3 Henan Research Center on Diamond Carbon Engineering Technology, Zhengzhou 451191, China
4 School of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191,China
下载:  全 文 ( PDF ) ( 6682KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对聚合物材料导热性差的问题,为了改善聚合物填充复合材料的导热和吸附等性能,以聚丙烯腈和氮化硼为原料,利用静电纺丝方法制备了聚丙烯腈/氮化硼(PAN/BN)有机无机杂化复合纤维。采用扫描电镜、热分析、红外光谱、X射线衍射仪、激光导热仪和比表面积及孔隙度分析仪对复合纤维进行了结构和性能表征。实验通过改变聚丙烯腈和氮化硼在纺丝溶液中的质量比,研究了纤维中不同氮化硼含量对复合纤维形态、结构和性能的影响。结果表明,通过静电纺丝能够把氮化硼包覆并均匀分散在聚丙烯腈聚合物中,可有效改善聚合物的导热和吸附性能。随着纤维中氮化硼含量的增加,材料的热导率增加,当BN质量分数为54.5% 时,纺制得到的PAN/BN杂化复合纤维的热导率最高达到3.977 W/(m·K),比热导率为0.048 W/(m·K)的纯PAN纤维高82.8倍左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳芝
张玲杰
张一风
张旺玺
关键词:  静电纺丝  聚丙烯腈  氮化硼  复合纤维  导热性能  吸附    
Abstract: In order to improve the thermal conductivity and adsorption properties of polymers, the polyacrylonitrile/boron nitride(PAN/BN)hybrid fibrous composites were obtained via electrospinning. The structures and properties of PAN/BN fibrous composites were characterized by field emission scanning electron microscopy, fourier transform infrared,differential scanning calorimetry, X-ray diffraction, laser flash analyzer and accele-rated surface area porosimetry system. The influences of different content of BN on the morphology and properties of the resulting composite fibers were studied by changing the weight ratio of polyacrylonitrile and BN. The results show that electrospinning can solve the problem of uniform dispersion of sub-micron boron nitride in polyacrylonitrile, and improve the thermal conductivity and adsorption performance of which effectively as well. The thermal conductivity increases with the increase of boron nitride content in the comoposite fibers. When the actual content of boron nitride is 54.5wt%, the thermal conductivity of the spun PAN/BN composite fibers reaches 3.977 W/(m·K), which is about 82.8 times higher than that of the pure PAN fibers (only 0.048 W/(m·K)).
Key words:  electrospinning    polyacrylonitrile    boron nitride    fibrous composites    thermal conductivity property    adsorption
                    发布日期:  2020-05-29
ZTFLH:  TQ164  
基金资助: 国家自然科学基金(11472316);河南省科技创新优秀团队(CXTD2013048);河南省教育厅自然科学重点项目(19A430031;18A430035)
通讯作者:  5605@zut.edu.cn   
作者简介:  王艳芝,女,教授,硕士研究生导师,以第一作者在国内外期刊发表论文20多篇,获授权国家发明专利8件。研究方向为高分子纤维复合材料、非织造材料。
引用本文:    
王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
WANG Yanzhi, ZHANG Lingjie, ZHANG Yifeng, ZHANG Wangxi. Study on Preparation, Structure and Properties of Polyacrylonitrile/Boron Nitride Hybrid Composite Fibers via Electrospinning. Materials Reports, 2020, 34(12): 12158-12162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060142  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12158
1 Li K S, Wang Q. Journal of Functional Materials,2002,33(2),136(in Chinese).
李侃社,王琪.功能材料,2002,33(2),136.
2 King J A, Tucker K W, Vogt B D, et al. Polymer Composites,1999,20(5),643.
3 Ye C M, Chen Y L. Journal of China Plastics,2002(12),14(in Chinese).
叶昌明,陈永林.中国塑料,2002(12),14.
4 Lu X, Xu G, Hofstra P G, et al. Journal of Polymer Science Part B Polymer Physics,1998,36(13),2259.
5 Tanimoto M, Yamagata T, Miyata K, et al. ACS Applied Materials& Interfaces,2013,5(10),4374.
6 Mu Q, Feng S, Diao G. Polymer Composites,2007,28(2),125.
7 Shen M X, Cui Y X, He J, et al. International Journal of Minerals Me-tallurgy & Materials,2011,18(5),623.
8 Chen J, Huang X, Sun B, et al. ACS Applied Materials & Interfaces,2017,9(36),30909.
9 Lin Y, Connell J W. Nanoscale,2012,4(22),6908.
10 Zhou A G, LI Z Y, Li L, et al. Journal of the Chinese Ceramic Society,2014,42(2),220(in Chinese).
周爱国,李正阳,李良,等.硅酸盐学报,2014,42(2),220.
11 Li Z L, He A H. Synthetic Fiber in China,2015,44(2),28(in Chinese).
李智璐,贺爱华.合成纤维,2015,44(2),28.
12 Reneker D H, Yarin A L. Polymer,2008,49,2387.
13 Alia A, Elhamid M A. Composites Part A: Applied Science and Manufacturing,2006,37,1681.
14 Zhang W X. Textile Science Research,2010,21(3),1(in Chinese).
张旺玺.纺织科学研究,2010,21(3),1.
15 Zhang B Y, Li J H, Zhang R Q, et al. Journal of Textile Research,2018,39(7),15(in Chinese).
张博亚,李佳慧,张如全,等.纺织学报,2018,39(7),15.
16 Kampalanonwat P, Supaphol P. ACS Applied Materials & Interfaces,2010,12(12),3619.
17 Khanw S, Asmatulu R, Ahmed I, et al. International Journal of Thermal Sciences,2013,71(9),74.
18 Qin X H, Wang X W, Hu Z M, et al. Journal of Donghua University,2005,31(6),16(in Chinese).
覃小红,王新威,胡祖明,等.东华大学学报,2005,31(6),16.
19 Reneker D H, Yarin A L, Fong H, et al. Journal of Applied Physics,2000,87(9),4531.
20 Thompson C J, Chase G G, Yarinal. Polymer,2007,48(23),6913.
21 Shivkumars. Journal of Materials Science,2006,41(17),5704.
22 Li C X, LI L P. Beijing Textile Journal,2002(1),57(in Chinese).
李春霞,李立平.北京纺织,2002(1),57.
23 Behler K D, Stravato A, Mochalin V, et al. ACS Nano,2009,3(2),363.
24 Delavar Z, Shojaei A. Carbohydrate Polymers,2017,167,219.
25 Deng J X, Wang Y, Zhang X K, et al. Journal of Light Scatting,2008,20(1),56(in Chinese).
邓金祥,王瑶,张晓康,等.光散射学报,2008,20(1),56.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[3] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[4] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[5] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[6] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[7] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[8] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[9] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[10] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[11] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[12] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[13] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[14] 王家宏, 陈瑶, 孙彤彤. 改性凹凸棒土吸附剂的制备及对水中Cr(Ⅵ)的吸附机理[J]. 材料导报, 2020, 34(11): 11003-11008.
[15] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed