Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4142-4147    https://doi.org/10.11896/cldb.18120038
  高分子与聚合物基复合材料 |
PVDF/PAMAM复合膜的制备及对铜离子的吸附性能
张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉
天津工业大学材料科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津 300387
Its Adsorption Properties for Copper Ions
ZHANG Xiaoye, SUN Heyu, HE Yang, LI Jianjian, FENG Xia, ZHAO Yiping, CHEN Li
State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 5016KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 超支化聚合物聚酰胺-胺(PAMAM)含有大量端氨基和酰胺基团,可以通过络合配位作用吸附重金属离子,增加代数可进一步提高其吸附能力。本工作将不同代数的PAMAM分别与聚偏氟乙烯(PVDF)共混,通过浸没沉淀相转化法制备出能够吸附铜离子的PVDF/PAMAM复合膜。利用红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)、场发射扫描电镜(FESEM)以及原子力显微镜(AFM)等表征手段对膜的结构与形貌进行表征。通过纯水通量测试可知,膜的纯水通量由PVDF膜的64.86 L/(m2·h)提高到PVDF/G4.0 PAMAM复合膜的424.00 L/(m2·h),膜的亲水性得到显著提高。重金属离子静态吸附实验表明,PVDF/PAMAM复合膜对铜离子的吸附量由PVDF膜的2.60 mg/g提高到22.65 mg/g,提高了约7.70倍。通过分析吸附等温线可知,PVDF/PAMAM复合膜能够持续吸附铜离子,在550 min时还能够持续吸附,吸附动力学符合准二级动力学模型,属于化学吸附。PVDF/PAMAM共混拓宽了PVDF膜在吸附重金属领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张筱烨
孙赫宇
何洋
李健健
冯霞
赵义平
陈莉
关键词:  聚偏氟乙烯(PVDF)  聚酰胺-胺(PAMAM)  复合膜  铜离子  吸附    
Abstract: The hyperbranched polyamidoamine (PAMAM) have a large number of amine-terminated groups and amide groups, which can adsorb heavy metal ions by coordination, and further increase the adsorption capacity by increasing the number of generation. In this work, the different generation of PAMAM were added to a casting solution of polyvinylidene fluoride (PVDF) by blending, and PVDF/PAMAM membranes having an adsorption capacity for removing copper ions were prepared by immersion precipitation phase inversion. The structure and morphology of the membranes were characterized by infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM) and atomic force microscopy (AFM). Static contact angle and pure water flux were studied, and the results found that the pure water flux of PVDF/G4.0 PAMAM membranes were increased from 64.86 L/(m2·h) of PVDF membranes to 424.00 L/(m2·h), and the hydrophilicity of membranes were improved. Static adsorption experiments showed that the adsorption capacity of copper ions by PVDF/PAMAM membrane increased to 22.65 mg/g compared to PVDF membranes, which was 7.70 times higher than that of PVDF membrane. By adsorption isotherm analysis, the PVDF/PAMAM membrane can continuously adsorb copper ions, and continue to adsorb at 550 min. The adsorption kinetics accorded with the quasi-secondary kinetic model and belonged to chemical adsorption. The PVDF blend PAMAM membrane broadened the application of PVDF membrane in the field of adsorption of heavy metals.
Key words:  polyvinylidene fluoride (PVDF)    polyamidoamine (PAMAM)    composite membrane    copper ions    adsorption
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TQ316  
基金资助: 天津市科技计划项目(17YFZCSF01230)
通讯作者:  yipingzhao@tjpu.edu.cn   
作者简介:  张筱烨,2016年6月毕业于天津工业大学,获得学士学位。于2016年9月至今在天津工业大学攻读硕士学位,主要从事膜分离技术领域的研究;赵义平,教授、博士生导师、天津工业大学材料科学与工程学院党委书记。主要从事智能和功能分离膜材料、膜分离技术、塑料及橡胶材料改性与加工等方向的研究工作。在国内外学术刊物及会议上发表论文30余篇,其中SCI、EI等收录20余篇;申请国际发明专利1项(第二发明人),作为第一发明人申请国家发明专利13项,获授权7项;主编著作1部,参编1部;获天津市技术发明奖三等奖1项(排名第二),获中国纺织工业协会科学技术奖二等奖1项(排名第二),获中国纺织工业联合会科学技术奖二等奖1项(排名第二),2013年获香港桑麻纺织科技奖二等奖(排名第一)。
引用本文:    
张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
ZHANG Xiaoye, SUN Heyu, HE Yang, LI Jianjian, FENG Xia, ZHAO Yiping, CHEN Li. Its Adsorption Properties for Copper Ions. Materials Reports, 2020, 34(4): 4142-4147.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120038  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4142
1 Al-Rashdi B, Somerfield C, Hilal N. Separation & Purification Reviews, 2011, 40(3), 209.
2 Son E B, Poo K M, Chang J S, et al. Science of the Total Environment, 2018, 615, 161.
3 Fu F, Wang Q. Journal of Environmental Management, 2011, 92(3), 407.
4 Xing D Y, Chen G K, Wang K M, et al. Acta Materiae Compositae Sinica, 2017, 34(10),2271(in Chinese).
邢涤扬, 陈广凯, 王克敏, 等.复合材料学报, 2017, 34(10), 2271.
5 Adeleye A S, Conway J R, Garner K, et al. Chemical Engineering Journal, 2016, 286, 640.
6 Camarillo R, Pérez A, Canizares P, et al. Desalination, 2012, 286, 193.
7 Crini G. Bioresource Technology, 2006, 97(9), 1061.
8 Zhu Z Y, Wang L, Jiang J L, et al. Acta Materiae Compositae Sinica, 2018, 35(4),785(in Chinese).
朱振亚,王磊,姜家良,等. 复合材料学报,2018,35(4),785.
9 Li T, Zhang W, Zhai S, et al. Water Research, 2018,143,87.
10 Bu J, Li R, Quah C W, et al. Macromolecules, 2004, 37(18), 6687.
11 Cao J S, Wang C, Fang F, et al. Environmental Pollution, 2016, 219, 924.
12 Zhu J, Yang J, Deng B. Journal of Hazardous Materials, 2009, 166(2-3), 866.
13 Yantasee W, Lin Y, Fryxell G E, et al. Industrial & Engineering Che-mistry Research, 2004, 43(11), 2759.
14 Zhu W P, Gao J, Sun S P, et al. Journal of Membrane Science, 2015, 487,117.
15 Zhang J, Zhang D, Zhang A, et al. Iranian Polymer Journal, 2013, 22(7), 501.
16 Li G, Shen L, Luo Y, et al. Desalination, 2014, 338, 115.
17 Zhou S, Xue A, Zhang Y, et al. Applied Clay Science, 2015, 107, 220.
18 Kotte M R, Kuvarega A T, Cho M, et al. Environmental Science & Technology, 2015, 49(16), 9431.
19 Barakat M A, Schmidt E. Desalination, 2010, 256(1-3), 90.
[1] 张莉. 碳纳米管的吸附性能及对水中污染物的吸附:综述[J]. 材料导报, 2020, 34(Z1): 72-77.
[2] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[3] 周文娟, 谢谦, 赵磊. 再生微粉对聚羧酸减水剂的吸附性能研究[J]. 材料导报, 2020, 34(Z1): 246-248.
[4] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[5] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[6] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[7] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[8] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[9] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[10] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[11] 戴俊, 钱春香, 陈竞, 庞忠华. 无水乙酸钠对磷酸钾镁水泥水化性能和微观形貌的影响[J]. 材料导报, 2020, 34(6): 6066-6074.
[12] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[13] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[14] 陈林, 刘虹财, 严磊, 郭怡, 林宏, 蔺海兰, 卞军, 赵新为. 碳纳米管功能化改性聚偏氟乙烯介电复合材料的结构及性能[J]. 材料导报, 2020, 34(4): 4126-4131.
[15] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed