Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7003-7009    https://doi.org/10.11896/cldb.19040163
  材料与可持续发展(三)环境友好——环境友好材料与环境修复材料* |
氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展
刘宇程1,2, 祝梦1, 陈明燕1,2, 涂雯雯1, 甘冬1
1 西南石油大学化学化工学院,成都 610500;
2 西南石油大学工业危废处置与资源化利用研究院,成都 610500
Research Progress of Graphene Oxide/Metal Organic Frameworks Composite Membrane in Organic Wastewater Treatment
LIU Yucheng1,2, ZHU Meng1, CHEN Mingyan1,2, TU Wenwen1, GAN Dong1
1 College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China;
2 Institute of Industrial Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 3173KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯因力学特性、电子效应、光学特性、热性能以及其他化学性质而受到人们的广泛关注,其氧化产物——氧化石墨烯兼具以上优良性能,还含有丰富的羟基、羧基等含氧基团。氧化石墨烯是一种二维材料,具有独特的原子厚度和微米横向尺寸、优异的机械强度、较大的表面积和较强的亲水性,在水处理方面具有广阔的应用前景。近年来,关于氧化石墨烯复合膜的制备方法与应用研究取得了较大进展,但是针对有机废水的处理,复合膜的不稳定性阻碍了其发展。
   氧化石墨烯膜对有机物有较好的去除效果,但通量较低、稳定性差、抗污性较差的缺点越来越突出。氧化石墨烯的层间距限制了其在水处理中的应用。因此,除研究影响氧化石墨烯膜处理效果的因素外,研究者们还将具有多孔结构的金属有机框架材料与氧化石墨烯结合制备复合膜,并取得了一定的成果。目前,氧化石墨烯/金属有机框架材料复合膜对有机染料亚甲基蓝和刚果红等的去除率可达99%,较氧化石墨烯纯膜的去除率提高约55%。
   在复合膜处理有机废水的研究中,氧化石墨烯/铜基(HKUST-1)复合膜、氧化石墨烯/锆基(UiO-66)复合膜、氧化石墨烯/锌基(ZIF-8)复合膜等已取得较好的研究成果。其中铜基金属有机框架材料与氧化石墨烯制备的复合膜应用较多,已被广泛用于有机废水、含油废水的处理以及气体分离领域。金属有机框架材料的加入,可有效增大氧化石墨烯的层间距,提高复合膜的亲水性,为水分子通过复合膜提供了有效的通道和推动力,从而提升复合膜的通量和去污性能。
   本文介绍了国内外氧化石墨烯/金属有机框架材料复合膜的研究与应用,重点论述其在难降解有机物、有机染料废水处理中的研究进展,并对复合膜去除有机物的机理进行探讨。此外,对氧化石墨烯/金属有机框架材料复合膜的发展前景进行展望,在涵盖两种优良吸附剂特性的基础上,随着研究的不断深入,高通量、高去除率、高抗污性能的复合膜将会在更多领域得到应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宇程
祝梦
陈明燕
涂雯雯
甘冬
关键词:  氧化石墨烯  金属有机框架材料  复合膜  有机废水    
Abstract: Graphene has attracted much attention due to its mechanical properties, electronic effects, optical properties, thermal properties and other chemical properties. Its oxidation product, graphene oxide (GO), has both the above excellent properties and rich hydroxyl and carboxyl groups. GO is a two-dimensional material with unique atomic thickness and micron transverse size, excellent mechanical strength, large surface area and strong hydrophilicity. It has broad application prospects in water treatment. In recent years, great progress has been made in the preparation and application of GO composite membranes. However, in the treatment of organic wastewater, the instability of composite membranes hinders its development.
GO membrane has a higher removal rate of organics, but the low flux, low rejection, poor stability and the layer spacing limit its application in water treatment. Therefore, in addition to investigate the factors affecting the treatment effect of graphene oxide membrane, researchers consi-dered add appropriate porous metal organic frameworks (MOFs) into grapheme oxide to prepare functional composite membrane. In addition, some achievements have been achieved. At present, the removal rate of organic dyes such as methylene blue and Congo red by GO/MOFs composite membrane can reach 99%, which is about 55% higher than that of pure GO membrane.
In the study of organic wastewater treatment by composite membranes, the composite membranes with better treatment effect are as follows: graphene oxide/copper-based (HKUST-1) composite membrane, graphene oxide/zirconium-based (UiO-66) composite membrane and graphene oxide/zinc-based (ZIF-8) composite membrane. Copper-based MOFs and GO composite membranes are widely used in organic and oily wastewater treatment and gas separation. The addition of MOFs can effectively increase the interlayer spacing of GO, and improve the hydrophilicity of composite membranes. It can be also provide an effective channel and driving force for the passage of water molecules. In addition, the flux and decontamination performance of the composite membranes can be improved.
In this paper, the research and application at home and abroad of GO/MOFs composite membrane is introduced. The research progress of GO/MOFs composite membrane in the treatment of refractory organic matter and organic dye wastewater is mainly discussed. The mechanism of organic matter removal by composite membrane is further discussed. In addition, development prospects of GO/MOFs composite membranes are prospected. Based on the characteristics of two excellent adsorbents, the composite membranes with high throughput, high removal rate and superior anti-fouling performance will be applied in more fields.
Key words:  graphene oxide    metal organic frameworks    composite membrane    organic wastewater
                    发布日期:  2020-04-10
ZTFLH:  O624  
基金资助: 四川省科技计划重点研发项目(2018GZ0421)
通讯作者:  rehuo2013@sina.cn   
作者简介:  刘宇程,博士研究生导师,西南石油大学化学化工学院教授,工业危废处置与资源化利用研究院院长。1999年6月获西南石油大学化学化工学院学士学位,2001年6月获西南石油大学化学化工学院硕士学位,2012—2017年在四川大学环境工程专业获得博士学位,2015—2016年在美国康涅狄格大学环境工程专业做访问学者。先后获得四川省青年科技奖和四川省学术和技术带头人后备人选、四川省生态文明促进会专家委员会委员、四川省循环经济协会专家咨询委员会委员、四川省环保厅技术审查专家、四川省科技厅科技计划项目评审专家。主要从事油气田环境化学、污染治理、石油污染土壤微生物修复的研究工作。近年来,在油气田环境化学领域发表论文80余篇,包括Applied Energy、Sensors and Actuators B:Chemical、Biosensors and Bioelectronics、Chemical Enginee-ring JournalInternational Journal of Greenhouse Gas Control、Engineering Chemistry Research和Bioresource Technology等
祝梦,2017年毕业于西南石油大学,获得工学学士学位。现为西南石油大学化学化工学院博士研究生,在刘宇程教授的指导下进行研究。目前主要研究领域为氧化石墨烯基材料在水处理中的应用,已在Chemical Engineering Journal期刊发表文章一篇。
引用本文:    
刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
LIU Yucheng, ZHU Meng, CHEN Mingyan, TU Wenwen, GAN Dong. Research Progress of Graphene Oxide/Metal Organic Frameworks Composite Membrane in Organic Wastewater Treatment. Materials Reports, 2020, 34(7): 7003-7009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040163  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7003
1 Yadav V B, Gadi R, Kalra S. Journal of Environmental Management, 2019, 232, 803.
2 Han D, Currell M J, Cao G. Environmental Pollution, 2016, 218, 1222.
3 Doltade S B, Dastane G G, Jadhav N L, et al. Journal of Water Process Engineering, 2019, 29, 100768.
4 Sivagami K, Sakthivel K P, Nambi I M. Journal of Environmental Chemical Engineering, 2018, 6(3), 3656.
5 Da Silva Brito G F, Oliveira R, Grisolia C K, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 85.
6 Deng Y, Chen N, Feng C, et al. Chemical Engineering Journal, 2019, 364, 349.
7 Haddad M, Abid S, Hamdi M, et al. Journal of Environmental Management, 2018, 223, 936.
8 Tang Y P, Luo L, Thong Z, et al. Journal of Membrane Science, 2017, 541, 434.
9 Yue X, Li J, Zhang T, et al. Chemical Engineering Journal, 2017, 328, 117.
10 Lin H, Dangwal S, Liu R, et al. Journal of Membrane Science, 2018, 563, 336.
11 Al-Janabi N, Hill P, Torrente-Murciano L, et al. Chemical Engineering Journal, 2015, 281, 669.
12 Li Y, Miao J, Sun X, et al. Chemical Engineering Journal, 2016, 298, 191.
13 Yuan Y, Gao X, Wei Y, et al. Desalination, 2017, 405, 29.
14 Yin J, Zhu G, Deng B. Desalination, 2016, 379, 93.
15 Liu N, Zhang M, Zhang W, et al. Journal of Materials Chemistry A, 2015, 3(40), 20113.
16 Hu X, Yu Y, Zhou J, et al. Journal of Membrane Science, 2015, 476, 200.
17 Sunil K, Karunakaran G, Yadav S, et al. Chemical Engineering Journal, 2018, 348, 678.
18 Gao N, Xu Z. Separation and Purification Technology, 2019, 212, 737.
19 Li L, Liu X L, Gao M. Journal of Materials Chemistry,2014, 2(6),1795.
20 Xu F, Yu Y, Yan J, et al. Chemical Engineering Journal, 2016, 303, 231.
21 Lyu J, Wen X, Kumar U, et al. RSC Advances, 2018, 8(41), 2313.
22 Chen M, Ding Y, Liu Y, et al. Petroleum Science and Technology, 2018, 36(2), 141.
23 Makhetha T A, Moutloali R M. Journal of Membrane Science, 2018, 554, 195.
24 Lee X J, Hiew B Y Z, Lai K C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 163.
25 Zhang P, Gong J, Zeng G, et al. Chemical Engineering Journal, 2017, 322, 657.
26 Huang K, Liu G, Lou Y, et al. Angewandte Chemie-International Edition, 2014, 53(27), 6929.
27 Han Y, Xu Z, Gao C. Advanced Functional Materials, 2013, 23(29), 3693.
28 Nair R R, Wu H A, Jayaram P N, et al. Science, 2012, 335(6067), 442.
29 Qiu L, Zhang X, Yang W, et al. Chemical Communications, 2011, 47(20), 5810.
30 Dreyer D R, Park S, Bielawski C W, et al. Chemical Society Reviews, 2010, 39(1), 228.
31 Xi Y H, Hu J Q, Liu Z, et al. ACS Applied Materials & Interfaces, 2016, 8(24SI), 15557.
32 Buelke C, Alshami A, Casler J, et al. Journal of Membrane Science, 2019, 588,117195.
33 Shete M, Kumar P, Bachman J E, et al. Journal of Membrane Science, 2018, 549, 312.
34 Hu M, Masoomi M Y, Morsali A. Coordination Chemistry Reviews, 2019, 387, 415.
35 Kalmutzki M J, Hanikel N, Yaghi O M. Science Advances, 2018, 4(10), 9180.
36 Li Ling,Liu Xiaolan, Geng Hongyun, et al. Journal of Materials Chemistry A, 2013,1,10292.
37 Petit C, Bandosz T J. Advanced Materials, 2009, 21(46), 4753.
38 Hu C, Xiao J, Mao X, et al. Materials Letters, 2019, 240, 113.
39 Xing X, Fu Z, Zhang N, et al. Chemical Communications, 2019, 55(9), 1241.
40 Valizadeh B, Nguyen T N, Stylianou K C. Polyhedron, 2018, 145, 1.
41 Safaei M, Foroughi M M, Ebrahimpoor N, et al. TrAC Trends in Analytical Chemistry, 2019,118,401.
42 Petit C, Bandosz T J. Journal of Colloid and Interface Science, 2015, 447, 139.
43 Dai W, Fang Y, Yu L, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 222.
44 Wen Y, Zhang J, Xu Q, et al. Coordination Chemistry Reviews, 2018, 376, 248.
45 Qiu S, Xue M, Zhu G. Chemical Society Reviews, 2014, 43(16), 6116.
46 Rahmanifar M S, Hesari H, Noori A, et al. Electrochimica Acta, 2018, 275, 76.
47 Ma D, Peh S B, Han G, et al. ACS Applied Materials & Interfaces, 2017, 9(8), 7523.
48 Kadhom M, Hu W, Deng B. Membranes, 2017, 7(2),31.
49 He Y, Tang Y P, Ma D, et al. Journal of Membrane Science, 2017, 541, 262.
50 Chen D, Zhao J, Zhang P, et al. Polyhedron, 2019, 162, 59.
51 Zhang Y, Li B, Wei Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 93.
52 Sun P, Zhu M, Wang K, et al. ACS Nano, 2012, 7(1), 428.
53 Kim H W, Yoon H W, Yoon S M, et al. Science, 2013, 342(6154), 91.
54 Liu Y, Zhu M, Chen M, et al. Chemical Engineering Journal, 2019, 359, 47.
55 GroßM, Tupinamba Lima M, Uhlig M, et al. Separation and Purification Technology, 2017, 188, 451.
56 Yang Z, Ma X, Tang C Y. Desalination, 2018, 434, 37.
57 Huang A, Feng B. Journal of Membrane Science, 2018, 548, 59.
58 Huang L, Pei J, Jiang H, et al. Desalination, 2018, 442, 1.
59 Ma J, Guo X, Ying Y, et al. Chemical Engineering Journal, 2017, 313, 890.
60 Makhetha T A, Moutloali R M. Journal of Membrane Science, 2018, 554, 195.
61 Han Y, Sheng S, Yang F, et al. Journal of Materials Chemistry A, 2015, 3(24), 12804.
62 Liu Y, Zhu M, Chen M, et al. Chemical Engineering Journal, 2019, 359, 47.
63 Rahmanifar M S, Hesari H, Noori A, et al. Electrochimica Acta, 2018, 275, 76.
64 Yang H, Wang N, Wang L, et al. Journal of Membrane Science, 2018, 545, 158.
65 Thebo K H, Qian X, Wei Q, et al. Journal of Materials Science & Technology, 2018, 34(9), 1481.
66 Mi B. Science, 2014, 343(6172), 740.
67 Aba N F D, Chong J Y, Wang B, et al. Journal of Membrane Science, 2015, 484, 87.
68 Jiang G, Zhang S, Zhu Y, et al. Journal of Materials Chemistry A, 2018, 6(7), 2927.
69 Golpour M, Pakizeh M. Chemical Engineering Journal, 2018, 345, 221.
70 Wu Q, Chen G, Sun W, et al. Chemical Engineering Journal, 2017, 313, 450.
71 Chen L, Li N, Wen Z Y, et al. Chemical Engineering Journal, 2018, 347, 12.
72 Zhu J, Tian M, Hou J, et al. Journal of Materials Chemistry A, 2016, 4(5), 1980.
73 Ma J, Guo X, Ying Y, et al. Chemical Engineering Journal, 2017, 313, 890.
74 Liu Y, Tu W, Chen M, et al. Chemical Engineering Journal, 2018, 336, 263.
75 Wu X, Wu Y, Chen L, et al. Journal of Membrane Science, 2018, 553, 151.
76 Pi Y, Li X, Xia Q, et al. Chemical Engineering Journal, 2018, 337, 351.
77 Zhu C, Zhang Z, Wang B, et al. Microporous and Mesoporous Materials, 2016, 226, 476.
78 Tanhaei M, Mahjoub A R, Safarifard V. Ultrasonics Sonochemistry, 2018, 41, 189.
79 Feng T, Zhang F, Wang J, et al. Journal of Applied Polymer Science, 2012, 125(3), 1766.
80 Mahmoudian M, Kochameshki M G, Hosseinzadeh M. Journal of Environmental Chemical Engineering, 2018, 6(2), 3122.
81 Smith A T, Lachance A M, Zeng S, et al. Nano Materials Science, 2019, 1(1), 31.
82 Zhang N, Qi W, Huang L, et al. Chinese Journal of Chemical Enginee-ring, 2019,27(6),1348.
[1] 张筱烨, 孙赫宇, 何洋, 李健健, 冯霞, 赵义平, 陈莉. PVDF/PAMAM复合膜的制备及对铜离子的吸附性能[J]. 材料导报, 2020, 34(4): 4142-4147.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[4] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[5] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[6] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[7] 刘刚铄, 戴树玺, 高亚鸽, 顾玉宗. 缺陷态结构:开启石墨烯特殊性质和应用之门的钥匙[J]. 材料导报, 2019, 33(19): 3219-3226.
[8] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[9] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[10] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[11] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[12] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[13] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[14] 李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
[15] 李文龙, 薛屏. 微生物燃料电池分隔材料的研究新进展[J]. 《材料导报》期刊社, 2018, 32(7): 1065-1072.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed