Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1945-1948    https://doi.org/10.11896/cldb.18070037
  无机非金属及其复合材料 |
利用石墨烯基空穴传输层提升有机太阳能电池性能
林珊, 史永堂, 王盈盈, 逄贝莉
青岛科技大学材料科学与工程学院,青岛 266042
Enhancing the Performance of Organic Solar Cells by Introducing Graphene-based Hole Transfer Layer
LIN Shan, SHI Yongtang, WANG Yingying, PANG Beili
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042
下载:  全 文 ( PDF ) ( 2114KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,有机太阳能电池(OSCs)由于能有效利用太阳能且具有成本低、柔性、便携、质量轻等优势而受到极大关注。有机太阳能电池由三部分组成,分别为活性层、界面层(电子传输层和空穴传输层)和电极。界面层的存在对器件性能有极大的影响,合适的界面层可以有效促进电荷提取和光传输。然而,界面层材料存在制备方法复杂、成本较高、稳定性较差等问题,限制了有机太阳能电池的商业化应用。因而,设计制备可溶液加工、低成本、稳定的高效有机太阳能电池仍是一项重大的挑战。   本研究采用Hummers法制备氧化石墨烯(GO)材料用作OSCs的空穴传输层,以提高OSCs器件的光电转换效率,并改善器件的稳定性。采用透射电镜(TEM)、X射线电子衍射(XRD)、拉曼光谱(Raman)等测试方法对GO进行形貌表征和结构分析;利用紫外吸收光谱(UV-Vis)对GO进行光学性能分析;通过J-V测试表征电池器件的性能。结果表明,所构筑的GO作空穴传输层的有机太阳能电池器件,以PBDT-BDD:PC71BM为活性层,器件效率为7.97%,与传统的PEDOT:PSS为空穴传输层的器件效率(7.9%)相近。同时,以GO作空穴传输层的有机太阳能电池器件稳定性较以传统PEDOT:PSS为空穴传输层的器件稳定性明显提高,放置80 d后器件效率维持在原效率的83%, 而传统PEDOT:PSS器件效率仅为初始效率的45%。这些结果都说明了GO能够作为有机太阳能电池的空穴传输层,促进实现高稳定性、低成本的器件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林珊
史永堂
王盈盈
逄贝莉
关键词:  可溶液加工  氧化石墨烯  空穴传输层  有机太阳能电池    
Abstract: In recent years, organic solar cells (OSCs) has aroused numerous attention thanks to their effective utilization of solar energy and competitive advantages, like low-cost, flexibility, portability and lightweight. Typical OSCs are composed of three parts, namely photoactive layer, interfacial layers (electron transport layer and hole transport layer), and electrodes. Among them, interfacial layers exhibit significant impact on the performance of OSCs device, and appropriate interface layer will be ecceedingly beneficial for the charge extraction and light transmission of the OSCs. Nevertheless, the majority of interfacial layers materials suffer from complex synthnsis approach, high-cost and poor stability, hindering the commercialization of OSCs. Accordingly, it is still a great challenge to design solution-processable, low-cost, highly stably and effective OSCs. In this work, Hummers method was employed to synthesize graphene oxide (GO), hole transport layer for OSCs, aiming at enhancing the performance and stability of OSCs. The morphology and structure of GO was characterized by means of transmission electron microscope (TEM), X-ray electron diffraction (XRD), Raman spectroscope; the optical properties of GO was analyzed by ultraviolet-visible spectrophotometry (UV-Vis); and the performance of OSCs device was evaluated by J-V test. The GO-based OSCs devices with PBDT-BDD:PC71BM as active layer held a power conversion efficiency (PCE) of 7.97%, similar to the conventional PEDOT:PSS-based devices (7.9%). Meanwhile, the GO-based OSCs devices showed a phenomenal increase in stability compared with the conventional one. The former preserved 83% of its original PCE value after storage for 80 d, while the latter remained only 45% of original PCE. Apparently, it can be concluded that GO is a promising hole transport layer material for OSCs, which contributes for the realization of high stability, and low-cost OSCs.
Key words:  solution-processed    graphene oxide    hole transport layer    organic solar cells
               出版日期:  2019-06-20      发布日期:  2019-05-31
ZTFLH:  TM914.4+2  
基金资助: 山东省高等学校科研计划项目(J17KA013)
通讯作者:  pangbl@qust.edu.cn   
作者简介:  林珊,青岛科技大学研究生。2016年毕业于齐齐哈尔大学无机非金属材料工程专业,获学士学位,目前在青岛科技大学材料工程专业攻读硕士学位。在Electrochimica Acta学术期刊发表论文一篇,申请国家专利一项。课题主要研究方向为新型薄膜太阳能电池电极材料的制备及其性能。逄贝莉,青岛科技大学讲师,硕士研究生导师。2006年毕业于中国海洋大学材料化学专业,获学士学位,2014年毕业于韩国忠南国立大学工业化学专业获博士学位,2014年进入青岛科技大学材料科学与工程学院博士后流动站,2016年进入青岛科技大学材料科学与工程学院材料物理专业任教。 目前在Carbon、 Electrochimica Acta、RSC Advances、Applied Surface Science、Materials Science and Engineering: B等国内外学术期刊共发表学术论文十余篇,其中SCI收录12篇,获国家发明专利授权1项。主要研究工作为石墨烯材料的制备与性能研究以及新型太阳能电池材料的制备、表征及器件组装。
引用本文:    
林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
LIN Shan, SHI Yongtang, WANG Yingying, PANG Beili. Enhancing the Performance of Organic Solar Cells by Introducing Graphene-based Hole Transfer Layer. Materials Reports, 2019, 33(12): 1945-1948.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070037  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1945
1 Yu G, Gao J, Hummelen J C, et al.Science, 1995, 270(5243), 1789.
2 Ma W, Kim J Y, Lee K et al.Macromolecular Rapid Communications, 2007, 28, 1776.
3 Hoppe H, Saricifci N S. Journal of Materials Research, 2004, 19, 1924.
4 Dennler G, Scharber M C, Brabec C J. Advanced Materials, 2009, 21, 1323.
5 Bao X, Zhu Q, Wang T, et al. ACS Applied Materials & Interfaces, 2015, 7(14), 7613.
6 He Zhicai, Wu Hongbin, Cao Yong. Advanced Materials, 2014, 26(7), 1006.
7 Reese Matthew O, White Matthew S, Rumbles Garry, et al. Applied Physics Letters, 2008, 92(5), 35.
8 Song Myung-Seok, Jeong Chae Hwan, Kim Do-Heyoung. Science of Advanced Materials, 2016, 8(1), 75.
9 He Zhicai, Zhong Chengmei, Huang Xun, et al. Advanced Materials, 2011, 23(40), 4636.
10Stroller M D, Park S, Zhu Y, et al. Nano Letters, 2008, 8(10), 3498.
11Xu C, Chen S, Wang X. Chinese Journal of Applied Chemistry, 2011, 28(1), 1.
12Kim J H, Lee Y S, Sharma A K, et al. Electrochim Acta, 2006, 52(4), 1727.
13Huang Y, Chen Y S.Chinese Science: Series B, 2009,39(9),887(in Chinese).
黄毅, 陈永胜.中国科学: B 辑, 2009,39(9),887.
14Hu Y, Jin J, Zhang H. Acta Physico-Chimica Sinica, 2010, 26(8), 2073.
15Li S, Tu K, Lin C, et al. ACS Nano, 2010, 4(6), 3169.
16Xia Y, Pan Y, Zhang H, et al. ACS Applied Materials & Interfaces, 2017, 9(31), 26252.
17Li W, Tang X, Zhang H, et al. Carbon, 2011, 49(14), 4724.
18Chen L, Du D, Sun K, et al. ACS Applied Materials & Interfaces, 2014, 6, 22334.
19Rafique S, Abdullah S, Alhummiany H, et al. Journal of Physical Chemistry C, 2017, 121, 140.
20Wang Y, Bao X, Pang B, et al. Carbon, 2018, 31.
21Bose S, Kuila T, Uddin M Es, et al. Polymer, 2010, 51(25), 5921.
22Pang B, Dong L, Ma S, et al. RSC Advances, 2016, 6(47), 41287.
23Gao Y, Yip H, Hau S K, et al. Applied Physics Letters, 2010, 97(20), 251.
[1] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[2] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[3] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[4] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[5] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[6] 刘刚铄, 戴树玺, 高亚鸽, 顾玉宗. 缺陷态结构:开启石墨烯特殊性质和应用之门的钥匙[J]. 材料导报, 2019, 33(19): 3219-3226.
[7] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[8] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[9] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[10] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[11] 曾祥花, 李战峰, 任静琨, 刘伟鹏, 陈今波, 王向坤, 郝玉英. 基于噻吩-苯非对称单元的DPP类聚合物给体材料的合成及光伏性能[J]. 《材料导报》期刊社, 2018, 32(9): 1423-1426.
[12] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[13] 李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
[14] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[15] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed