Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1949-1954    https://doi.org/10.11896/cldb.18040106
  无机非金属及其复合材料 |
以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能
吴晓燕1, 谭维2, 罗才武1, 张晓文1, 李密1, 房琦1, 谭文发1
1 南华大学资源环境与安全工程学院,衡阳 421001
2 南华大学研究生院,衡阳 421001
Efficiency of Nickel/Yttria Stabilized Zirconia Anode-supportedSolid Oxide Fuel Cell with MnFe2O4 Barrier Layer
WU Xiaoyan1, TAN Wei2, LUO Caiwu1, ZHANG Xiaowen1, LI Mi1, FANG Qi1, TAN Wenfa1
1 School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001
2 Graduate School, University of South China, Hengyang 421001
下载:  全 文 ( PDF ) ( 2955KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高镍-氧化钇稳定氧化锆(Ni-YSZ)阳极支撑的固体氧化物燃料电池(SOFC)以含碳气为燃料时的抗积碳性能,采用丝网印刷法在Ni-YSZ阳极表面印制阻挡层,阻挡层的材料为高温煅烧制备的铁酸锰(MnFe2O4)粉体。在750 ℃下以模拟污泥微波热解生物质气为燃料,测试含阻挡层的电池的电化学效能和抗积碳性能,并利用扫描电镜对测试前、后的阳极进行表征。研究结果表明:MnFe2O4阻挡层与Ni-YSZ阳极的结合性较好;在Ni-YSZ阳极上添加MnFe2O4阻挡层后,电池的放电性能有所降低,但是电池在以模拟生物质气为燃料时的抗积碳性能大幅提高,且在浆料中添加16%(质量分数)的石墨制备的阻挡层效果最佳。本研究对Ni-YSZ阳极以生物质气为燃料时的抗积碳能力的改进与发展具有积极意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴晓燕
谭维
罗才武
张晓文
李密
房琦
谭文发
关键词:  固体氧化物燃料电池  阳极  阻挡层  铁酸锰  生物质气  积碳    
Abstract: In order to improve carbon deposition resistance of nickel/yttria stabilized zirconia (Ni-YSZ) anode-supported solid oxide fuel cell (SOFC) in carbon-containing fuels, barrier layer was prepared on the Ni-YSZ anode by screen printing in this research. The barrier layer material was spinel manganese ferrite (MnFe2O4), which was produced by high-temperature calcination. The cell with barrier layer and the blank cell were tested in simulated biosygas at 750 ℃ to compare efficiency and carbon deposition resistance. The anodes were characterized by scanning electron microscope (SEM) coupled with an INCA Energy-dispersive X-ray spectroscopy (EDS) before and after performances. Experimental results showed that there was a good matching between Ni-YSZ anode and MnFe2O4 barrier layer. A little decreasing of the cell performance was observed under operation. It was confirmed that the modified anode had an increase in carbon deposition resistance in the simulated biosyngas. The best performance was obtained when the MnFe2O4 slurry was added with 16wt% graphite. This investigation is of great significance to improve and develop the ability of the Ni-YSZ anode carbon deposition resistance with biosyngas feeding.
Key words:  solid oxide fuel cell    anode    barrier layer    MnFe2O4    biosyngas    carbon deposition
                    发布日期:  2019-05-31
ZTFLH:  TM911.4  
基金资助: 国家自然科学基金青年科学基金项目(51704169);湖南省自然科学基金(2018JJ3444);湖南省教育厅重点项目(17A180);南华大学博士启动项目(2016XQD37);南华大学双一流建设项目(2017SYL05)
通讯作者:  uscwuxiaoyan@126.com   
作者简介:  吴晓燕,南华大学,讲师。2016年6月毕业于哈尔滨工业大学,获得博士学位。同年在南华大学资源环境与安全工程学院参加工作。主要研究方向包含污泥处理与资源化、固体氧化物燃料电池。
引用本文:    
吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
WU Xiaoyan, TAN Wei, LUO Caiwu, ZHANG Xiaowen, LI Mi, FANG Qi, TAN Wenfa. Efficiency of Nickel/Yttria Stabilized Zirconia Anode-supportedSolid Oxide Fuel Cell with MnFe2O4 Barrier Layer. Materials Reports, 2019, 33(12): 1949-1954.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040106  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1949
1 Han M, Peng S. Materials and preparation of solid oxide fuel cells, Science Press, China, 2004 (in Chinese).
韩敏芳,彭苏萍. 固体氧化物燃料电池材料及制备, 科学出版社, 2004.
2 Wang W, Su C, Wu Y Z, et al. Chemical Reviews, 2013, 113(10),8104.
3 Papurello D, Borchiellini R, Bareschino P, et al. Applied Energy, 2014, 125, 254.
4 Borello D, Di Carlo A, Boigues-Munoz C, et al. Energy Procedia, 2014, 61, 1099.
5 Sharma M, Rakesh N, Dasappa S. Renewable and Sustainable Energy Reviews, 2016, 60, 450.
6 Miao H, Wang W G, Li T S, et al. Journal of Power Sources, 2010, 195(8), 2230.
7 Arpornwichanop A, Chalermpanchai N, Patcharavorachot Y, et al. International Journal of Hydrogen Energy, 2009, 34(18), 7780.
8 Shin T H, Ida S, Ishihara T. Journal of the American Chemical Society, 2011, 133(48), 19399.
9 Chen K, Zhang L, Gholizadeh M, et al. Chemical Engineering Science, 2016, 154, 108.
10Zhou X, Oh T, Vohs J M, et al. Journal of the Electrochemical Society, 2015, 162(6), F567.
11Zhu B, Bai X Y, Chen G X, et al. International Journal of Energy Research, 2002, 26(1), 57.
12Rosensteel W A, Babiniec S M, Storjohann D D, et al. Journal of Power Sources, 2012, 205(205), 108.
13Faro M L, Reis R M, Saglietti G G A, et al. Journal of Applied Electrochemistry, 2015, 45(7), 1.
14Lo Faro M, Reis R M, Saglietti G G A, et al. ChemElectroChem, 2015, 1(8), 1395.
15Zhu H, Wang W, Ran R, et al. International Journal of Hydrogen Energy, 2012, 37(12), 9801.
16李箭,华斌,李檬,等. 中国专利,CN104103838A,2014.
17Jin C, Yang C, Zheng H, et al. Journal of Power Sources, 2012, 201(1), 66.
18Jin C, Yang C, Zhao F, et al. Electrochemistry Communications, 2010,12(10), 1450.
19Enger B C, L?deng R, Walmsley J, et al. Applied Catalysis A General, 2010, 383(1-2), 119.
20Yang Z, Xia G G, Li X H, et al. International Journal of Hydrogen Energy, 2007, 32(16), 3648.
21Qi W. Synthesis and assessment of CuFe2O4 as cathodes of inter-mediated temperature solid oxide fuel cells. Master’s Thesis,Harbin Institute of Technology, China, 2016 (in Chinese).
王琦. 中温固体氧化物燃料电池CuFe2O4阴极的制备及性能研究.硕士学位论文, 哈尔滨工业大学, 2016.
22Lin Y, Zhan Z, Barnett S A. Journal of Power Sources, 2006, 158(2),1313.
23Zhu H, Colclasure A M, Kee R J, et al. Journal of Power Sources,2006, 161(1),413.
24Zhou X L, Sun K N, Gao J, et al. Journal of Power Sources,2009, 191(2), 528.
25Wu Xiaoyan, Zhang Jun, Zuo Wei, et al. Materials Review B:Research Papers,2014,28(12), 14 (in Chinese).
吴晓燕,张军,左微,等. 材料导报:研究篇,2014, 28(12), 14.
26Hanghang C, Jing Y, Long Z, et al. Hot Working Technology, 2016(22), 11 (in Chinese).
柴杭杭,于静,支龙,等. 热加工工艺,2016(22), 11.
27Zhu X, Lü Z, Wei B, et al. Journal of Power Sources, 2010, 195(7), 1793.
[1] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[2] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[3] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[4] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[5] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[8] 张贺贺, 李芳芳, 王海燕, 彭志光, 唐有根. 基于Fe/Co-MOF制备的高性能镍铁电池铁电极及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(5): 719-724.
[9] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[10] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[11] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[12] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[13] 郭晓亮, 周生刚, 张能锦, 竺培显, 曹勇, 李洪山. 等离子喷涂法制备Al/TiB2复合电极及电化学性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 21-24.
[14] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[15] 杨小洁, 董兵海, 陈凤翔, 万丽, 赵丽, 王世敏. 一维二氧化钛光阳极的制备及在染料敏化太阳能电池中的应用综述*[J]. 《材料导报》期刊社, 2017, 31(17): 138-145.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed