Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2862-2867    https://doi.org/10.11896/cldb.18060148
  无机非金属及其复合材料 |
硫酸体系铅基阳极稳定性研究进展
钟晓聪,陈芳会,王瑞祥,徐志峰
江西理工大学冶金与化学工程学院,赣州 341000
A Review on the Stability of Lead-based Anodes in H2SO4 Solution
ZHONG Xiaocong, CHEN Fanghui, WANG Ruixiang, XU Zhifeng
School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 6679KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅基阳极具有制备简单、价格低廉的优势而被广泛应用于有色金属湿法电沉积领域。随着矿物品位降低,锌电解液中氟、氯浓度逐步增大,导致铅基阳极腐蚀加剧、电锌品质降级。传统铅基阳极无法满足工业应用要求,直接限制了锌冶炼行业的可持续发展,铅基阳极在硫酸体系中的稳定性亟待提升。
   当前,国内外研究者为提升铅基阳极服役稳定性所采取的主要措施有:(1)调控铅合金的金相结构,如优化合金成分、热处理和塑性加工;(2)铅阳极板表面预处理,如喷砂处理、溶液预处理等;(3)优化铅阳极结构,如多孔阳极、夹层阳极和涂层电极等。上述措施大部分以铅或铅合金电极为改进对象,然而,电解过程中铅合金阳极表面覆盖有氧化物膜层,本质上是以金属/氧化物电极形式服役的。因此,上述改进措施仍然无法从根本上解决铅基阳极稳定性差的难题。
   作为金属/氧化物电极,改善铅基阳极在硫酸体系中稳定性的关键在于同步提升铅基阳极的基底/氧化膜层结合稳定性和氧化膜层内部稳定性。本文归纳了基底的耐腐蚀性能、力学性能、表面预处理三个因素对基底与氧化膜层结合稳定性的影响,以及析氧反应、膜层成分、膜层结构三个因素对氧化膜层内部稳定性的影响,并探讨了这些因素对铅基阳极稳定性的影响机制。
   开发新型铅基阳极应着眼于同步提升基底/氧化膜层结合稳定性和氧化膜层内部稳定性。设计高结合强度、低化学势差、结合形态稳定的金属/氧化物过渡层,预制成分分布均匀、结构致密的氧化膜层,是制备满足高氟、氯电解体系工业应用要求的新型铅基阳极的关键。基于上述分析,可以预测硫酸体系析氧铅基阳极未来可能的发展方向有:(1)设计三维有序多孔Pb或Pb合金基底,提高基底与氧化膜层的结合强度;(2)构筑梯度氧化物过渡层,即在基底与氧化膜层间构筑Pb-PbO-PbOx-PbO2过渡层,形成O浓度梯度,抑制析氧反应产生的活性氧向基底扩散;(3)实现氧化物颗粒与基底冶金结合,提高氧化物涂层的服役稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟晓聪
陈芳会
王瑞祥
徐志峰
关键词:  锌电积  铅基阳极  稳定性  氧化膜层  腐蚀    
Abstract: Lead-based anode has been widely used for electrowinning of non-ferrous metals because of its simple preparation process and low cost. However, due to the degrading degree of zinc minerals, fluoride and chloride concentration in electrolyte for zinc electrowinning ascends gradually, which further leads to severer corrosion of lead-based anode and lower quality of cathodic zinc. Consequently, the traditional lead-based anode could not meet the demand of industrial operation, which threatens the sustainable development of zinc metallurgy industry. Therefore, it is urgent to improve the stability of lead-based anode in sulfuric acid solutions.
Currently, the main measures taken to improve the service stability of lead-based anode are as follows: (i) optimizing metallic microstructure of lead alloys through adjusting alloy elements, heat treatment, plastic deformation; (ii) surface pretreatment such as sandblasting and chemical etching; (iii) designing novel electrode structures, such as porous anode, sandwich structure anode and DSA anode. These measures were mainly aimed at lead or lead alloy anodes. However, lead-based anodes work as metal/oxides electrodes during electrowinning process due to the anodic layer formed on the surface of lead substrates. Therefore, these measures mentioned above fails to resolve the stability problem of lead-based anodes.
As a metal/oxides electrode, the key for improving the stability of lead-based anode in sulfuric acid solution was simultaneously improving the bond stability of substrate/anodic layer and inner stability of anodic layer. In this review, the inf-luence of corrosion resistance, mechanical performance, and surface pretreatment of lead-based substrate on the bond stability of substrate/anodic layer was summarized. In addition, the influence of oxygen evolution reaction, composition and structure of anodic layer on the inner stability of anodic layer was analyzed. Furthermore, the influence mechanism of these factors on the stability of lead-based anode was discussed.
Designing novel lead-based anode should focus on simultaneously improving the bond stability of substrate/anodic layer and inner stability of anodic layer. The crucial work for preparing novel lead-based anodes is designing transition layer with high bond-strength, low chemical potential difference, and stable dimension between substrate and anodic layer, and synthesizing anodic layer with uniform composition and compact structure. Based on analysis mentioned above, it could be forecasted that future developments of lead-based anode used in sulfuric acid solutions as follows: (i) designing 3D porous Pb or Pb alloy substrate to improve the bond-stability of substrate and anodic layer; (ii) constructing transition layer consisting of gradient oxides between substrate and anodic layer, such as “Pb-PbO-PbOx-PbO2”. The gradient O concentration would help inhibiting the transfer of O species formed during oxygen evolution reaction towards the substrate, which further relieves oxidation and corrosion of lead (or lead alloy) substrate; (iii) realizing metallurgical bond of oxide particles and lead substrates to improve the service stability of anodic layer.
Key words:  zinc electrowinning    lead-based anode    stability    anodic layer    corrosion
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TF813  
基金资助: 国家自然科学基金(51704130);江西理工大学博士启动资金(jxxjbs16026)
作者简介:  钟晓聪,博士,讲师,硕士研究生导师。2011年和2016年毕业于中南大学,分别获冶金工程学士学位和有色金属冶金工学博士学位。2016年7月起就职于江西理工大学冶金与化学工程学院。以第一或通讯作者在Hydrometallurgy 、JOM、《中国有色金属学报》《金属学报》等国内外SCI、EI检索学术期刊发表研究论文10余篇,获授权发明专利3项。目前主要研究领域为湿法冶金用惰性电极材料及电化学冶金过程。
王瑞祥,博士,教授,博士研究生导师,江西理工大学冶金与化学工程学院副院长。2009年毕业于中南大学,获有色金属冶金工学博士学位。以第一或通讯作者在学术期刊发表研究论文10余篇,获授权发明专利8项,获国家科技进步奖二等奖1项。目前主要研究领域为稀贵金属提取冶金和资源高效循环利用。
引用本文:    
钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
ZHONG Xiaocong, CHEN Fanghui, WANG Ruixiang, XU Zhifeng. A Review on the Stability of Lead-based Anodes in H2SO4 Solution. Materials Reports, 2019, 33(17): 2862-2867.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060148  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2862
1 Schmachtel S, Pust S E, Kontturi K, et al.Journal of Applied Electrochemistry,2010, 40(3), 581.<br />
2 Mohammadi F, Tunnicliffe M, Alfantazi A.Journal of the Electrochemical Society,2011, 158(12), C450.<br />
3 ElSayed A R, Ibrahim E M M, Mohran H S, et al. Metallurgical and Materials Transactions A,2015, 46(5), 1995.<br />
4 Zhang Z, Chen B M, Guo Z C, et al.Material Review A: Review Papers,2016, 30(10), 112 (in Chinese).<br />
张璋, 陈步明, 郭忠诚, 等. 材料导报: 综述篇, 2016, 30(10), 112.<br />
5 Nikoloski A N, Barmi M J. Hydrometallurgy,2013, 137, 45.<br />
6 Iliev P, Stefanova V, Lucheva B, et al.Journal of Chemical Technology and Metallurgy,2017, 52(2), 252.<br />
7 Antu ano N, Cambra J F, Arias P L. Hydrometallurgy,2016, 161, 65.<br />
8 Yin R H, Zhai A P, Li F.China Nonferrous Metallurgy,2011, 40(2), 27 (in Chinese).<br />
尹荣花, 翟爱萍, 李飞. 中国有色冶金, 2011, 40(2), 27.<br />
9 Lin X, Peng Z, Yan J, et al. Journal of Cleaner Production,2017, 149, 1079.<br />
10 Yu J, Yang H Y, Li L B, et al. Nonferrous Metals (Extractive Metallurgy),2014(6), 17 (in Chinese).<br />
俞娟, 杨洪英, 李林波, 等.有色金属 (冶炼部分), 2014(6), 17.<br />
11 Maccagni M G. Journal of Sustainable Metallurgy,2016, 2(2), 133.<br />
12 Li Z, Jing L I, Zhang L, et al.Transactions of Nonferrous Metals Society of China,2015, 25(3), 973.<br />
13 Wu X, Liu Z, Liu X. Hydrometallurgy,2014, 141, 31.<br />
14 Zhong X, Yu X, Jiang L, et al.JOM,2015, 67(9), 2022.<br />
15 Zhong X C, Wang R X, Liu Q S, et al. The Chinese Journal of Nonferrous Metals,2018, 28(4), 792 (in Chinese).<br />
钟晓聪, 王瑞祥, 刘庆生, 等. 中国有色金属学报, 2018, 28(4), 792.<br />
16 Li D G, Wang J D, Chen D R. Journal of Power Sources,2013, 235, 202.<br />
17 Yang H T, Guo Z C, Chen B M, et al. Hydrometallurgy,2014, 147, 148.<br />
18 Gonzalez J A, Rodrigues J, Siegmund A. Lead and Zinc,2005, 5, 1037.<br />
19 Huang H, Zhou J Y, Chen B M, et al. Transactions of Nonferrous Metals Society of China,2010, 20, s288.<br />
20 Liu H, Liu Y, Zhang C, et al. Journal of Applied Electrochemistry,2008, 38(1), 101.<br />
21 Xu R D, Huang L P, Zhou J F, et al. Hydrometallurgy,2012, 125, 8.<br />
22 Ma R, Cheng S, Zhang X, et al. Hydrometallurgy,2016, 159, 6.<br />
23 Pavlov D. Journal of the Electrochemical Society,1992, 139(11), 3075.<br />
24 Wang J R, Wei G L. Journal of Electroanalytical Chemistry,1995, 390(1 2), 29.<br />
25 Monahov B, Pavlov D. Journal of Applied Electrochemistry,1993, 23(12), 1244.<br />
26 Pavlov D, Zanova S, Papazov G. Journal of the Electrochemical Society,1977, 124(10), 1522.<br />
27 Gilroy D.Journal of Applied Electrochemistry,1982, 12(2), 171.<br />
28 Clancy M, Bettles C J, Stuart A, et al. Hydrometallurgy,2013, 131, 144.<br />
29 Li J, Zhong X C, Jiang L X, et al. Journal of Functional Materials,2015, 46(5), 5026 (in Chinese).<br />
李劼, 钟晓聪, 蒋良兴, 等. 功能材料, 2015, 46(5), 5026.<br />
30 Stefanov Y, Noncheva Z, Petrova M, et al.Hydrometallurgy,1996, 40(3), 319.<br />
31 Petrova M, Noncheva Z, Dobrev T, et al. Hydrometallurgy,1996, 40(3), 293.<br />
32 Yang H, Chen B, Liu J, et al. Rare Metal Materials and Engineering,2014, 43(12), 2889.<br />
33 Zhang Y, Chen B, Guo Z. Acta Metallurgica Sinica (English Letters),2014, 27(2), 331.<br />
34 Jiang L X, Hao K T, Lv X J, et al.The Chinese Journal of Nonferrous Metals,2011, 21(8), 216 (in Chinese).<br />
蒋良兴, 郝科涛, 吕晓军, 等. 中国有色金属学报, 2011, 21(8), 216.<br />
35 Free M, Moats M, Robinson T, et al. In: Proceeding of Electrometallurgy 2012 in TMS 2012 Annual Meeting & Exhibition.Orlando,2012, pp. 3.<br />
36 Ramachandran P, Naganathan K, Balakrishnan K, et al. Journal of Applied Electrochemistry,1980, 10(5), 623.<br />
37 Ramachandran P, Venkateswaran K V, Nandakumar V. Bulletin of Electrochemistry,1996, 12(5), 346.<br />
38 Prengaman R, Siegmund A. In: Proceedings of the Lead Zinc 2000 Symposium. Pittsburgh, 2000, pp. 589.<br />
39 Roy P, Berger S, Schmuki P. Angewandte Chemie International Edition,2011, 50(13), 2904.<br />
40 Cerro Lopez M, Meas Vong Y, Méndez Rojas M A, et al. Applied Catalysis B: Environmental,2014, 144, 174.<br />
41 Zhang W, Lin H, Kong H, et al. International Journal of Hydrogen Energy,2014, 39(30), 17153.<br />
42 Monahov B, Pavlov D. Journal of Applied Electrochemistry,1993, 23(12), 1244.<br />
43 Cao J, Zhao H, Cao F, et al. Electrochimica Acta,2007, 52(28), 7870.<br />
44 Li Y, Jiang L, Li J, et al. RSC Advances,2014, 4(11), 5339.<br />
45 Prengaman R D. Journal of Power Sources,2001, 95(12), 224.<br />
46 Alamdari E K, Darvishi D, Khoshkhoo M S, et al. Hydrometallurgy,2012, 119, 77.<br />
47 Nikoloski A N, Nicol M J. Mineral Processing and Extractive Metallurgy Review,2009, 31(1), 30.<br />
48 Zhong X, Gui J, Yu X, et al.Acta Physico Chimica Sinica,2014, 30(3), 492.<br />
49 McGinnity J, Nicol M.Hydrometallurgy,2014, 144, 133.<br />
50 Liu H, Yang J, Liang H, et al.Journal of Power Sources,2001, 93(12), 230.<br />
51 Yu P, O'Keefe T J. Journal of the Electrochemical Society,2002, 149(5), A558.<br />
52 Zhong X, Wang R, Xu Z, et al. Hydrometallurgy,2017, 174, 195.<br />
53 Mohammadi M, Alfantazi A. Hydrometallurgy,2015, 153, 134.<br />
54 Mohammadi M, Alfantazi A. Hydrometallurgy,2016, 159, 28.<br />
55 Lai Y, Li Y, Jiang L, et al. Journal of Electroanalytical Chemistry,2012, 671, 16.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[3] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[4] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[5] 张政, 刘标, 高延敏. 端乙烯基硅氧烷对水性丙烯酸树脂的改性[J]. 材料导报, 2019, 33(z1): 519-522.
[6] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[7] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[8] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[9] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[12] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[13] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[14] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[15] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed