Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 777-783    https://doi.org/10.11896/cldb.201905008
  无机非金属及其复合材料 |
全无机钙钛矿量子点的研究进展
王恩胜, 余丽萍, 廉世勋, 周文理
湖南师范大学化学化工学院,长沙 410081
An Overview on Advances in All-inorganic Perovskite Quantum Dots
WANG Ensheng, YU Liping, LIAN Shixun, ZHOU Wenli
College of Chemistry Engineering, Hunan Normal University, Changsha 410081
下载:  全 文 ( PDF ) ( 1909KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,在各类光电材料中,钙钛矿量子点以优异的性能脱颖而出。相对于有机-无机杂化钙钛矿量子点,全无机钙钛矿量子点(IPQDs)的稳定性更高。 IPQDs因具有光吸收系数高、发射光谱窄、光致发光量子产率(PLQY)高、组成与尺寸可调、发射光谱可调以及光致发光和电致发光等特性而备受关注,是当前最具潜力的光电材料之一,广泛应用于发光二极管(LEDs)、太阳能电池、光电探测器、激光等领域。
IPQDs材料尚存在许多问题,主要体现在以下几方面:(1)发光机理不够明确。仍需要大量全面而系统的研究来揭示其优异光电性能背后的内在机制。(2)CsPbCl3的PLQY较低,需要进一步提高。(3) 成分铅具有毒性。铅在IPQDs中的角色需要进一步剖析,为进一步发展无铅或少铅的钙钛矿材料奠定理论基础。(4)稳定性差。IPQDs在极性溶剂中极易分解或团聚;对光、氧气、湿度和温度的稳定性差;易发生阴离子交换。(5)量子点表面的长链绝缘配体不利于晶粒间电荷迁移。在充分钝化量子点表面的前提下,尽可能地减少配体对电荷迁移的阻碍是发展高效LEDs的有效途径。(6)为适应规模化生产,需要进一步优化制备工艺。
近年来,研究者主要从亟待解决的毒性和稳定性问题展开研究,并取得了重大进展。通过使用无毒或低毒的金属(如Mn、Sn等)来全部或部分取代Pb,以及用聚合物材料来包覆IPQDs,均为解决该材料的毒性问题提供了有效方案。而通过掺杂Mn2+可提高钙钛矿晶格的形成能,从根源上改善了IPQDs的热稳定性。此外,利用有机、无机或高分子等材料包覆IPQDs,可以有效避免其与外界环境接触,进而提高该材料的稳定性。
本文全面综述了近年来有关IPQDs的研究进展,包括合成方法、形貌、光学性质和表面性质。着重分析了该材料存在的稳定性和铅的毒性问题以及目前的解决方案。探讨了该材料在发光二极管、太阳能电池、光电探测器以及激光领域的应用前景。最后,总结了该材料有待解决的问题并展望了未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王恩胜
余丽萍
廉世勋
周文理
关键词:  全无机钙钛矿量子点  表面性质  稳定性  光致发光    
Abstract: In recent years, perovskite quantum dots stand out for their excellent photoelectric properties among all kinds of optoelectronic materials. Compared with organic-inorganic hybrid perovskite quantum dots, all-inorganic perovskite quantum dots (IPQDs) show higher chemical stability. IPQDs have aroused tremendous interest owing to their high absorption coefficient, narrow full-width at half maximum, high photoluminescence quantum yield (PLQY), controllable composition and size, tunable emission spectrum, photoluminescence and electroluminescence dual characteristics. These excellent properties have made IPQDs become one of the most promising optoelectronic materials, and widely used in light emitting diodes (LEDs), solar cell, photodetector, laser and other fields.
Unfortunately, there still exist many problems in IPQDs. Ⅰ.The luminescence mechanism of IPQDs is not clear enough. A large number of comprehensive and systematic studies are still needed to reveal the mechanism for their excellent photoelectric performance. Ⅱ. The PLQY of CsPbCl3 is low and needs further improvement. Ⅲ. Pb in IPQDs is toxic. Further analysis of the impact of Pb in IPQDs should be carry out so as to lay a theoretical foundation for development of lead-free or lead-less QDs materials. Ⅳ.IPQDs are unstable, and they are easy to decompose or agglomerate in polar solvents. The IPQDs, especially CsPbI3, exhibit poor stability under light, oxygen, high humidity and temperature. Anion exchange can occur easily when different IPQDs are mixed. Ⅴ. Long chain insulation ligands on the surface of QDs hinder the charge-transfer between crystal grains. On the premise of sufficient passivation of quantum dots surface, an effective way to develop highly efficient LEDs is to minimize the hindrance of ligands to charge transfer. Ⅵ. Further optimization of preparation process is required for the sake of adapting to large-scale production.
Researchers have devoted themselves to reduce the toxicity and improve the stability, and significant progress has been made in recent years. Effective ways have been developed to solve the toxicity of IPQDs by completely or partially replacing Pb with non-toxic or low toxic metals (like Mn and Sn), and coating IPQDs with polymers or metal oxides. Moreover, doping Mn2+ into IPQDs can increase formation energy of perovskite lattice, and thereby enhance the thermal stability of IPQDs. Besides, using organic, inorganic or polymer materials to coat IPQDs can avoid the contact of IPQDs with external environment, thus the stability of IPQDs can be also improved.
This article provides an overall review on the recent advances in all-inorganic perovskite quantum dots, including synthesis methods, morphology, optical and surface properties of IPQDs. The stability of IPQDs, the toxicity of Pb and the current solutions are analyzed. The application prospects of IPQDs in light-emitting diodes, solar cells, photodetectors and lasers are discussed. Finally, some problems and outlook of future deve-lopment directions of IPQDs are pointed out.
Key words:  all-inorganic perovskite quantum dots    surface properties    stability    photoluminescence
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  O613.4  
  O649.4  
基金资助: 国家自然科学基金青年基金(21501058);湖南师范大学化学生物学及中药分析教育部重点实验室开放基金资助课题(KLCBTCMR18-14)
作者简介:  周文理,生于1982年。2012年于中山大学无机化学专业取得博士学位。2012—2015年分别在湖南师范大学和中国台湾大学进行了两年和一年的博士后研究工作。2015年受聘于湖南师范大学化学化工学院副教授。目前,主要从事无机发光材料与器件的研究工作。chemwlzhou@hunnu.edu.cn。王恩胜,2016年6月毕业于安阳师范学院,获得理学学士学位。现为湖南师范大学化学化工学院硕士研究生,在周文理副教授的指导下进行研究。目前主要研究领域为无机纳米发光材料。
引用本文:    
王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
WANG Ensheng, YU Liping, LIAN Shixun, ZHOU Wenli. An Overview on Advances in All-inorganic Perovskite Quantum Dots. Materials Reports, 2019, 33(5): 777-783.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905008  或          http://www.mater-rep.com/CN/Y2019/V33/I5/777
1 Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. Journal of Physical Chemistry B,1997,101(46),9463.
2 Daniel M C, Astruc D. Chemical Reviews,2004,104(1),293.
3 Burschka J, Pellet N, Moon S J, et al. Nature,2013,499,316.
4 Cai B, Xing Y, Yang Z, et al. Energy & Environmental Science,2013,6(5),1480.
5 Gonzalez-Carrero S, Galian R E, Perez-Prieto J. Particle & Particle Systems Characterization,2015,32(7),709.
6 Møller C K.Nature,1958,182,1436.
7 Weber D Z. Zeitschrift fur Naturforschung B,1978,33(12),1443.
8 Weber D Z. Zeitschrift fur Naturforschung B,1978,33,862.
9 Kojima A, Teshima K, Shirai Y, et al. Journal of The American Chemical Society,2009,131(17),6050.
10 Kojima A, Ikegami M, Teshima K, et al. Chemistry Letters,2012,41(4),397.
11 Salib M, Matsui T, Seo J, et al. Energy & Environmental Science,2016,9(6),1989.
12 Zhang D D, Eaton S W, Yu Y, et al. Journal of the American Chemical Society,2015,137(29),9230.
13 Nedelcu G, Protesescu L, Yakunin S, et al. Nano Letters,2015,15(8),5635.
14 Christians J A, Miranda Herrera P A, Kamat P V. Journal of the American Chemical Society,2015,137(4),1530.
15 Song J, Li J, Li X, et al. Advanced Materials,2015,27(44),7162.
16 Yakunin S, Protesescu L, Krieg F, et al. Nature Communications,2015,6,8056.
17 Wang Y, Li X, Zhao X, et al. Nano Letters,2016,16(1),448.
18 Zhang X, Lin H, Huang H, et al. Nano Letters,2016,16(2),1415.
19 Yin Y, Alivisatos A P. Nature,2005,437(7059),664.
20 Pradhan N, Xie R, Aldana J, et al. Journal of the American Chemical Society,2007,129(30),9500.
21 Bealing C R, Baumgardner W J, Choi J J, et al. ACS Nano,2012,6(3),2118.
22 Akkerman Q A, Motti S G, Srimath Kandada A R, et al. Journal of the American Chemical Society,2016,138(3),1010.
23 Wei S, Yang Y, Kang X, et al. Chemical Communications,2016,52,7265.
24 Sun S, Yuan D, Xu Y, et al. ACS Nano,2016,10(3),3648.
25 Li X, Wu Y, Zhang S, et al. Advanced Functional Materials,2016,26(15),2435.
26 Liang Z, Zhao S, Xu Z, et al. ACS Applied Materials & Interfaces,2016,8(42),28824.
27 Sun S, Yuan D, Xu Y, et al. ACS Nano,2016,10(3),3648.
28 Pan A, He B, Fan X, et al. ACS Nano,2016,10(8),7943.
29 Veldhuis S A, Boix P P, Yantara N, et al. Advanced Materials,2016,28(32),6804.
30 Zhang X, Xu B, Wang W, et al. ACS Applied Materials & Interfaces,2017,9(5),4926.
31 Koscher B A, Bronstein N D, Olshansky J H, et al. Journal of the Ame-rican Chemical Society,2016,138(37),12065.
32 Yoon H C, Kang H, Lee S, et al. ACS Applied Materials & Interfaces,2016,8(28),18189.
33 Xue J, Gu Y, Shan Q, et al. Angewandte Chemie-International Edition,2017,56(19),5232.
34 Song J, Li J, Li X, et al. Advanced Materials,2015,27(44),7162.
35 Nedelcu G, Protesescu L, Yakunin S, et al. Nano Letters,2015,15(8),5635.
36 Akkerman Q A, D’Innocenzo V, Accornero S, et al. Journal of the Ame-rican Chemical Society,2015,137(32),10276.
37 Yin W J, Yan Y, Wei S H. Journal of Physical Chemistry Letters,2014,5(21),3625.
38 Wong A B, Lai M, Eaton S W, et al. Nano Letters,2015,15(8),5519.
39 Sichert J A, Tong Y, Mutz N, et al. Nano Letters,2015,15(10),6521.
40 Kim Y, Yassitepe E, Voznyy O, et al. ACS Applied Materials & Interfaces,2015,7(45),25007.
41 Yassitepe E, Yang Z, Voznyy O, et al. Advanced Functional Materials,2016,26(47),8757.
42 Li J, Xu L, Wang T, et al. Advanced Materials,2017,29(5),1603885.
43 Liu I S, Lo H H, Chien C T, et al. Journal of Materials Chemistry,2008,18(6),675.
44 Ip A H, Thon S M, Hoogland S, et al. Nature Nanotechnology,2012,7(9),577.
45 Kovalenko M V, Scheele M, Talapin D V. Science,2009,324(5933),1417.
46 Tang J, Kemp K W, Hoogland S, et al. Nature Materials,2011,10(10),765.
47 Pan J, Quan L N, Zhao Y, et al. Advanced Materials,2016,28(39),8718.
48 Shi Z F, Li Y, Zhang Y T, et al. Nano Letters,2017,17(1),313.
49 Zhang Y H, Saidaminov M I, Dursun I, et al. Journal of Physical Che-mistry Letters,2017,8(5),961.
50 Hailegnaw B, Kirmayer S, Edri E, et al. Journal of Physical Chemistry Letters,2015,6(9),1543.
51 Li X M, Cao F, Yu D J, et al. Small,2017,13(9),1603996.
52 Huang S, Li Z, Wang B, et al. ACS Applied Materials & Interfaces,2017,9(8),7249.
53 Lita A, Washington A L, Burgt L, et al. Advanced Materials,2010,22(36),3987.
54 Wang H C, Lin S Y, Tang A C, et al. Angewandte Chemie-International Edition,2016,55(28),7924.
55 Dirin D N, Protesescu L, Trummer D, et al. Nano Letters,2016,16(9),5866.
56 Sun C, Zhang Y, Ruan C, et al. Advanced Materials,2016,28(45),10088.
57 Huang H, Chen B K, Wang Z G, et al. Chemical Science,2016,7(9),5699.
58 Palazon F, Stasio F D, Akkerman Q A, et al. Chemistry of Materials,2016,28(9),2902.
59 Pathak S, Sakai N, Wisnivesky R R F, et al. Chemistry of Materials,2015,27(23),8066.
60 Xu Y, Chen Q, Zhang C, et al. Journal of The American Chemical Society,2016,138(11),376.
61 Müller M, Kaiser M, Stachowski G M, et al. Chemical Materials,2014,26(10),3231.
62 Hormats E I, Unterleitner F C. Journal of Physical Chemistry,1965,69,3677.
63 Zou S, Liu Y, Li J, et al. Journal of the American Chemical Society,2017,139(33),1144311450.
64 Li Z C, Kong L, Huang S Q, et al. Angewandte Chemie-International Edition,2017,56,8134.
65 Chen W W, Hao J Y, Hu W, et al. Small,2017,23,1604085.
66 Raja S N, Bekenstein Y, Koc M A, et al. ACS Applied Materials & Interfaces,2016,8,35523.
67 Xuan T T, Yang X F, Lou S Q, et al. Nanoscale,2017,9,15286.
68 Meyns M, Peralvarez M, Heuer A, et al. ACS Applied Materials & Interfaces,2016,8,19579.
69 Jellicoe T C, Richter J M, Glass H F J, et al. Journal of the American Chemical Society,2016,138(9),2941.
70 Peedikakkandy L, Bhargava P. RSC Advances,2016,6(24),19857.
71 Stam W, Geuchies J J, Altantzis T, et al. Journal of the American Chemical Society,2017,139(11),4087.
72 Liu H W, Wu Z N, Shao J R, et al. ACS Nano,2017,11(2),2239.
73 Qiu X F, Cao B G, Yuan S, et al. Solar Energy Materials and Solar Cells,2017,159,227.
74 Zhang H H, Wang X, Liao Q, et al. Advanced Functional Materials,2017,27(7),1604382.
75 Palazon F, Akkerman Q A, Prato M, et al. ACS Nano,2016,10(1),1224.
76 Swarnkar A, Chulliyil R, Ravi V K, et al. Angewandte Chemie-International Edition,2015,54(51),15424.
77 Gong X, Yang Z, Walters G, et al. Nature Photonics,2016,10(4),253.
78 Moroz P, Liyanage G, Kholmicheva N N, et al. Chemical Materials,2014,26(14),4256.
79 Zhang X, Sun C, Zhang Y, et al. Journal of Physical Chemistry Letters,2016,7(22),4602.
80 De Wolf S, Holovsky J, Moon S J, et al. Journal of Physical Chemistry Letters,2014,5(6),1035.
81 Yin W J, Shi T, Yan Y. Advanced Materials,2014,26(27),4653.
82 Yin W J, Yang J H, Kang J, et al. Journal of Materials Chemistry A,2015,3(17),8926.
83 Stranks S D, Eperon G E, Grancini G, et al. Science,2013,342(6156),341.
84 Miyata A, Mitioglu A, Plochocka P, et al. Nature Physics,2015,11,582.
85 Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry,2013,52(15),9019.
86 Yi C, Luo J, Meloni S, et al. Energy & Environmental Science,2016,9(2),656.
87 Beal R E, Slotcavage D J, Leijtens T, et al. Journal of Physical Chemistry Letters,2016,7(5),746.
88 Kulbak M, Gupta S, Kedem N, et al. Journal of Physical Chemistry Letters,2016,7(1),167.
89 Park N G. Materials Today,2015,18(2),65.
90 Yang L, Barrows A T, Lidzey D G, et al. Reports on Progress in Physics,2016,79(2),026501.
91 Song J, Xu L, Li J, et al. Advanced Materials,2016,28(24),4861.
92 Dou L, Yang Y, You J, et al. Nature Communications,2014,5,5404.
93 Giacomo F D, Zardetto V, Lucarelli G, et al. Nano Energy,2016,30,460.
94 Yang W S, Noh J H, Jeon N J, et al. Science,2015,348(6240),1234.
95 Li J, Xu L, Wang T, et al. Advanced Materials,2016,29(5),1603885.
96 Kwak D H, Lim D H, Ra H S, et al. RSC Advances,2016,6(69),65252.
97 Li X, Yu D, Cao F, et al. Advanced Functional Materials,2016,26(32),5903.
98 Wang Y, Li X, Song J, et al. Advanced Materials,2015,27(44),7101.
99 Fu Y, Zhu H, Stoumpos C C, et al. ACS Nano,2016,10(8),7963.
100 Tang X, Hu Z, Chen W, et al. Nano Energy,2016,28,462.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[3] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[4] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[5] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[6] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[7] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[8] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[9] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[10] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[11] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[12] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[13] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[14] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[15] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed