Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2808-2812    https://doi.org/10.11896/cldb.19010073
  高分子与聚合物基复合材料 |
聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性
常悦1, 2, 陈支泽1, 2, 杨一奇3,
1 生态纺织教育部重点实验室,上海 201620
2 东华大学化学化工与生物工程学院,上海 201620
3 美国内布拉斯加-林肯大学生物系统工程系和材料与纳米科学研究中心,内布拉斯加-林肯
Preparation and Melt Stability of PLA-PCL Multi-block Stereocomplex Film
CHANG Yue1,2, CHEN Zhize1,2, YANG Yiqi3 1
Key Laboratory of Science and Technology of Eco-textile of Ministry of Education, Shanghai 201620
2 College of Chemistry, Chemical Engineering and Biochemistry, Donghua University, Shanghai 201620
3 Department of Biological Systems Engineering and Nebraska Center for Materials and Nanoscience, HECO Building, University of Nebraska-Lincoln, Lincoln NE 68583-0802, United States
下载:  全 文 ( PDF ) ( 2310KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 NE 68583-0802作为传统塑料薄膜的替代品,环境友好的聚乳酸(PLA)薄膜在众多领域得到广泛应用。然而,PLA自身存在缺陷,特别是其在加工过程中易发生降解,极大地增加了PLA薄膜的加工难度。为了提高聚乳酸立构复合物(sc-PLA)的韧性和熔体稳定性,使用D,L-丙交酯和聚(ε-己内酯)二醇(PCL)合成了具有相同分子量的聚乳酸多嵌段共聚物对映体,将对映体均匀混合后热压制备立构复合物薄膜(sc-PLCL/PDCD)。差示扫描量热仪(DSC)测试结果显示,该立构复合物表现出良好的熔体稳定性,重结晶后立构晶体回复率在97%以上。广角X射线多晶衍射(WXRD)测试证明热压薄膜中只存在立构晶体。同时,通过该方法可以将各种二醇柔性链段引入PLA手性分子链中以快速制备具有优良拉伸性能和熔体稳定性的PLA立构复合物材料,以达到适用于熔体加工的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常悦
陈支泽
杨一奇
关键词:  聚乳酸立构复合物  熔融稳定性  增韧改性  多嵌段共聚    
Abstract: The environmentally friendly polylactic acid (PLA) film is widely applied in diverse sectors as a substitute of the traditional plastic film. Howe-ver, there are intrinsic flaws in PLA, especially its great possibility to degrade during processing, which make the processing of PLA difficult. For the sake of enhancing the toughness and melt stability of polylactic acid stereocomplex (sc-PLA), the enantiomers of PLA multi-block copolymers with the same molecular weight were synthesized, taking L-lactide, D-lactide and poly(ε-caprolactone) diol (PCL-diOH) as raw materials. Then, the stereocomplex films of the multi-block copolymers (sc-PLCL/PDCD) were prepared by hot-press molding after uniformly mixing the enantiomers. The results of differential scanning calorimeter (DSC) indicated that the sc-PLCL/PDCD exhibited satisfactory melting stability, and the recovery rate of stereo-crystallites after recrystallization exceeded 97%. The test of wide angle X-ray polycrystalline diffraction (WXRD) de-monstrated that only stereo-crystallites existed in the hot pressed film. Besides, the stereocomplex film prepared by this approach was capable of introducing various flexible segments with diol end groups into the PLA chiral molecular chain, so as to rapidly prepare sc-PLA with excellent tensile properties and melting stability, being adapted to melting processing.
Key words:  polylactic acid stereocomplex    melt stability    toughening    multi-block copolymer
               出版日期:  2019-08-25      发布日期:  2019-07-12
ZTFLH:  O632  
基金资助: 国家自然科学基金青年基金(51503029)
作者简介:  常悦,东华大学纺织化学与染整工程博士生,专注于聚乳酸立构复合的研究及其应用开发。
杨一奇,美国内布拉斯加大学林肯分校农业及自然资源研究院、纺织服装系、生物工程系以及材料与纳米研究中心教授,长期以来致力于研究小麦、水稻等废弃农作物秸秆、废弃羽毛等天然纤维素和蛋白质高分子的资源化。研究成果已在材料、高分子、绿色化学和农业化学领域等国际著名学术期刊Trends in Biotechnology、Green Chemistry、Bioresource Technology、Biotechnology and Bioengineering、Biomacromolecules、Polymer,Food Chemistry, Journal of Agricultural、Food Chemistry等发表200多篇SCI论文,获美国发明专利6项,主编、参编学术著作5部。
引用本文:    
常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
CHANG Yue, CHEN Zhize, YANG Yiqi . Preparation and Melt Stability of PLA-PCL Multi-block Stereocomplex Film. Materials Reports, 2019, 33(16): 2808-2812.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010073  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2808
[1] Drumright R E, Gruber P R, Henton D E. Advanced Materials, 2000, 12 (23), 1841.
[2] Yu Q Y, Zhang T, Wang J J. Packaging Engineering, 2018, 39 (13), 15 (in Chinese)
俞秋燕, 张涛, 王家俊. 包装工程, 2018, 39 (13), 15.
[3] Guo S H. Development of flexible polylactic acid films. Master’s Thesis, Sichuan University, China, 2007 (in Chinese).
郭少华. 柔性聚乳酸薄膜的研制. 硕士学位论文, 四川大学, 2007.
[4] Hong Y Z, Yang D Z. Materials Review B:Research Papers, 2018, 32 (9), 3239(in Chinese).
洪雅真,杨丁柱.材料导报:研究篇, 2018,32(9),3239.
[5] Xu R J, Lei C H, Cai Q, et al. New Chemical Materials, 2015, 43 (9), 36(in Chinese).
徐睿杰, 雷彩红, 蔡启,等. 化工新型材料, 2015, 43 (9), 36.
[6] Zhao X P, Liu C, Xu M, et al. Materials Review A: Review Papers, 2018, 32 (4), 1158(in Chinese).
赵西坡, 刘 畅, 徐敏,等. 材料导报:综述篇, 2018, 32 (4), 1158.
[7] Pan P, Han L, Bao J, et al. Journal of Physical Chemistry B, 2015, 119 (21), 6462.
[8] Zhou W, Wang K, Wang S, et al. ACS Macro Letters, 2018, 7 (6), 667.
[9] Li Y, Li Q, Yang G, et al. Advances in Polymer Technology, 2018, 37 (6), 1674.
[10] Pan G W. Preparation and properties of high-molecular-weight polylactide fibers with completely stereo-complexed crystallites based on thermal induction. Ph.D. Thesis, Jiangnan University, China, 2017(in Chinese).
潘刚伟. 基于热诱导的全立构高分子量聚乳酸纤维的制备及其性能研究. 博士学位论文, 江南大学, 2017.
[11] Tsuji H, Ikada Y. Macromolecules, 1993, 26 (25), 6918.
[12] Tsuji H, Fukui I. Polymer, 2003, 44 (10), 2891.
[13] Rahman N, Kawai T, Matsuba G, et al. Macromolecules, 2009, 42 (13), 4739.
[14] Pan G, Xu H, Mu B, et al. Chemical Engineering Journal, 2017, 328, 759.
[15] Han L, Pan P, Shan G, et al. Polymer, 2015, 63, 144.
[16] Bai H, Liu H, Bai D, et al. Polymer Chemistry, 2014, 5 (20), 5985.
[17] Cui L, Wang Y, Zhang R, et al. Advances in Polymer Technology, 2018, 37 (7), 2429.
[18] Rahaman M H, Tsuji H. Journal of Applied Polymer Science, 2013, 129 (5), 2502.
[19] Song Y, Wang D, Jiang N, et al. ACS Sustainable Chemistry & Enginee-ring, 2015, 3 (7), 1492.
[20] Han L, Yu C, Zhou J, et al. Polymer, 2016, 103, 376.
[21] Sarasua J R, Prud'homme R E, Wisniewski M, et al. Macromolecules, 1998, 31 (12), 3895.
[22] Ikada Y, Jamshidi K, Tsuji H, et al. Macromolecules, 1987, 20 (4), 904.
[23] Zhang J M, Sato H, Tsuji H, et al. Macromolecules, 2005, 38 (5), 1822.
[24] Zhang J, Tashiro K, Tsuji H, et al. Macromolecules, 2007, 40 (4), 1049.
[25] Reid B O, Vadlamudi M, Mamun A, et al. Macromolecules, 2013, 46 (16), 6485.
[26] Cohn D, Hotovely Salomon A. Biomaterials, 2005, 26 (15), 2297.
[1] 杨磊,王乐民,李佳星,范晓光,郝浩然,裴红杰,伞迦楠,薛钧文. P(NIPAAm-co-AAPBA-co-HPM-co-TMSPM)四元共聚物 的温度及葡萄糖响应行为[J]. 《材料导报》期刊社, 2018, 32(12): 1959-1966.
[2] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[3] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[4] 黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
[5] 李延安, 董海泉, 徐丽娜, 李蛟. 硅丙乳液包覆Mg(OH)2核壳结构纳米粒子的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(18): 97-101.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed