Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 54-61    https://doi.org/10.11896/j.issn.1005-023X.2017.021.008
  材料综述 |
多巴胺对骨修复材料表面改性的研究进展
沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清
江南大学化学与材料工程学院,食品胶体与生物技术教育部重点实验室,无锡 214122
Research Progress of Dopamine in Surface Modification of Bone Repair Materials
SHEN Jiali, SHI Chang, SHI Dongjian, ZHANG Zhuying, CHEN Mingqing
Key Laboratory of Food Colloids and Biotechnology of Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122
下载:  全 文 ( PDF ) ( 4363KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着骨缺损病患的日益增多,对骨修复材料的要求越来越高,寻求有效的方法使骨修复材料实现功能化,以改善材料与骨组织之间的相互作用及促进骨组织快速修复成了关键所在。海洋生物贻贝分泌的粘附蛋白在水环境中展现出超强粘附性能,能牢固附着于各种材料表面。受粘附蛋白启发,研究发现多巴胺(Dopamine, DA)具有与贻贝粘附蛋白类似的结构和性能,其具有超强粘附性、化学反应活性以及生物相容性;特别是其对骨细胞有优异的粘附、增殖效果,有望用于骨修复材料的表面改性。着重介绍了DA的主要性能以及其在骨修复材料表面改性方面的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈佳丽
石畅
施冬健
章朱迎
陈明清
关键词:  多巴胺  骨修复材料  表面改性    
Abstract: With the increase of bone defect patients, requirements of bone repair materials become higher and higher. It is important to seek effective modification methods to prepare functional bone repair materials for improving the interaction between materials and the bone tissue and promoting bone repair rapidly. Inspired by the strong adhesive proteins secreted by mussels for attachment onto various substrates in wet condition, some research indicated that dopamine (DA) possesses the similar structure and performance to mussel adhesion proteins. Because of the strong adhesion, chemical reactivity and biocompatibility of DA, it is expected to be used for bone repair materials surface modification. This paper introduces the main performance and its research progress in surface modification of bone repair materials.
Key words:  dopamine    bone repair materials    surface modification
               出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  O632  
通讯作者:  施冬健,女,副教授,主要从事功能高分子材料和纳米材料的制备、性能与应用研究,以及可降解生物医用材料的结构设计与药物控制释放行为的研究 E-mail:djshi@jiangnan.edu.cn   
作者简介:  沈佳丽:女,1992年生,硕士研究生,主要从事生物基骨修复复合材料的研究
引用本文:    
沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
SHEN Jiali, SHI Chang, SHI Dongjian, ZHANG Zhuying, CHEN Mingqing. Research Progress of Dopamine in Surface Modification of Bone Repair Materials. Materials Reports, 2017, 31(21): 54-61.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.008  或          http://www.mater-rep.com/CN/Y2017/V31/I21/54
1 Wang Y J, Du C, Zhao N R, et al. Biomimetic artificial bone repair materials: A review[J]. J South China University of Technology (Natural Science Edition), 2012,40(10):51(in Chinese).
王迎军,杜昶,赵娜如,等.仿生人工骨修复材料研究[J].华南理工大学学报(自然科学版),2012,40(10):51.
2 Taskin M B, Xu R, Gregersen H, et al. Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic diffe-rentiation[J]. ACS Appl Mater Interfaces, 2016, 8(25):15864.
3 Madhurakkat Perikamana S K, Lee J, Lee Y B. Materials from mussel-inspired chemistry for cell and tissue engineering applications[J]. Biomacromolecules, 2015,16(9):2541.
4 Li Y. Based on biological adhesion molecular surface modification of tissue repair materials research[D].Beijing: Beijing University of Chemical Technology, 2013(in Chinese).
李琰.基于生物粘附分子表面改性的组织修复材料研究[D].北京:北京化工大学,2013.
5 Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative mate-rials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chem Rev, 2014, 114(9):5057.
6 Wu J J, Long Y H, Zhao N, et al. Progress on mussel-inspired bio-mimic polymers[J]. Polym Bull, 2011(10):86(in Chinese).
吴俊杰,龙宇华,赵宁,等.仿贻贝粘附高分子的研究进展[J].高分子通报,2011(10):86.
7 Ryu J H, Lee Y, Kong W H,et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic mate-rials[J]. Biomacromolecules, 2011,12(7):2653.
8 Ayyadurai N, Prabhu N S, Deepankumar K, et al. Bioconjugation of L-3,4-dihydroxyphenylalanine containing protein with a polysaccharide[J]. Bioconjugate Chem, 2011,22(4):551.
9 Rai A, Perry Carole C. Mussel adhesive protein inspired coatings: A versatile method to fabricate silica films on various surfaces[J]. J Mater Chem, 2012,22(11):4790.
10Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings[J]. Science, 2010, 328(5975):216.
11Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849):426.
12Postma A, Yan Y, Wang Y J, et al. Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules[J]. Chem Mater, 2009,21(14):3042.
13Simon J D, Peles D N. The red and the black[J]. Accounts Chem Res, 2010,43(11):1452.
14Watt Andrew A R, Bothma Jacques P, Meredith P. The supramolecular structure of melanin[J]. Soft Matter, 2009, 5(19):3754.
15Liu Y L, Ai K L, Liu J H, et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Adv Mater, 2013,25(9):1353.
16Liu Z G, Qu S X, Weng J. Application of polydopamine in surface modification of biomaterials[J]. Prog Chem, 2015,27(Z1):212(in Chinese).
刘宗光,屈树新,翁杰.聚多巴胺在生物材料表面改性中的应用[J].化学进展,2015,27(Z1):212.
17Wang Z M, Wang K F, Zhang Y N, et al. Protein-affinitive polydopamine nanoparticles as an efficient surface modification strategy for versatile porous scaffolds enhancing tissue regeneration[J]. Particle Particle Systems Characterization, 2016,33(2):89.
18Shin J, Cho J H, Jin Y, et al. Mussel adhesion-inspired reverse transfection platform enhances osteogenic differentiation and bone formation of human adipose-derived stem cells[J]. Small, 2016,12(45):6266.
19Waite J H. The phylogeny and chemical diversity of quinone-tanned glues and varnishes[J]. Comparative Biochem Physiology Part B, 1990,97(1):19.
20Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution[J]. Langmuir, 2011,27(6):2819.
21Waite J H. Reverse engineering of bioadhesion in marine mussels[J]. Annals of the New York Academy of Sciences, 1999,875:301.
22Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the structure of poly(dopamine)[J]. Langmuir, 2012,28(15):6428.
23Hong S, Na Y S, Choi S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation[J]. Adv Funct Mater, 2012,22(22):4711.
24Della Vecchia N F, Avolio R, Alfe M, et al. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point[J]. Adv Funct Mater, 2013,23(10):1331.
25Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion[J]. P N A S, 2006,103(35):12999.
26Zhu L P, Xu Y Y, Xi Z Y, et al. Self-polymerization of DOPA on polyethylene porous membranes and immobilization of heparin[J]. Acta Polym Sin, 2009(4):394(in Chinese).
朱利平,徐又一,奚振宇,等.DOPA在聚乙烯微孔膜上的自聚合及肝素固定化[J].高分子学报,2009(4):394.
27Zhang L, Wu J J, Wang Y X, et al. Combination of bioinspiration: A general route to superhydrophobic particles[J]. J Am Chem Soc, 2012,134(24):9879.
28Shi D J, Zhang L, Liu R J, et al. Preparation of catechol-based polymer film for direct reduction silver nanoparticle and its antibacterial property[J]. J Funct Mater, 2016, 47(7):7017(in Chinese).
施冬健,张蕾,刘蓉瑾,等.可直接还原银纳米粒子的儿茶酚基聚合物膜的制备及抗菌性能研究[J].功能材料,2016, 47(7):7017.
29Shi D J, Wang F, Liu R J, et al. Preparation and properties of catechol-metal complexation hydrogels[J]. Polym Mater Sci Eng, 2016, 32(5):156(in Chinese).
施冬健,汪飞,刘蓉瑾,等.儿茶酚基聚合物-金属复合水凝胶的制备及其性能研究[J].高分子材料科学与工程,2016, 32(5):156.
30Shi D J, Liu R J, Dong W F, et al. pH-Dependent and self-healing properties of mussel modified poly(vinyl alcohol) hydrogels in metal-free environment[J]. RSC Adv, 2015, 5:82252.
31Wu J J, Zhang L, Wang Y X, et al. Mussel-inspired chemistry for robust and surface-modifiable multilayer films[J]. Langmuir, 2011,27(22):13684.
32Yang K, Lee J S, Kim J, et al. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering[J]. Biomaterials, 2012, 33(29):6952.
33Hafner D, Ziegler L, Ichwan M, et al. Mussel-inspired polymer carpets: Direct photografting of polymer brushes on polydopamine nanosheets for controlled cell adhesion[J]. Adv Mater, 2016,28(7):1489.
34Zhong S, Luo R F, Wang X, et al. Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell[J]. Colloids Surf B: Biointerfaces, 2014,116:553.
35Shi D J, Zhang L, Shen J L, et al. Fabrication of rod-like nanocapsules based on polylactide and 3,4-dihydroxyphenylalanine for drug delivery system[J]. RSC Adv, 2015, 5:103414.
36Rim N G, Kim S J, Shin Y M, et al. Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells[J]. Colloids Surf B: Biointerfaces, 2012,91:189.
37Kao C T, Lin C C, Chen Y W, et al. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering[J]. Mater Sci Eng C, 2015,56:165.
38Ku S H, Park C B. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering[J]. Biomaterials, 2010,31(36):9431.
39Luo C, Zou Z P, Luo, B H. Enhanced mechanical properties and cytocompatibility of electrospun poly(l-lactide) composite fiber membranes assisted by polydopamine-coated halloysite nanotubes[J]. Appl Surf Sci, 2016,369:82.
40Cho H, Madhurakkat Perikamana S K, Lee J, et al. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation[J]. ACS Appl Mater Interfaces, 2014, 6(14):11225.
41Wang Z M, Li C, Xu J L, et al. Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications[J]. Chem Mater, 2015,27(3):848.
42Sun Y H, Deng Y, Ye Z Y, et al. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating[J]. Colloids Surf B: Biointerfaces, 2013,111:107.
43Lee J S, Lee K, Moon S H, et al. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels[J]. Macromol Biosci, 2014,14(8):1181.
44Li H H, Luo C, Luo B H, et al. Enhancement of growth and osteogenic differentiation of MC3T3-E1 cells via facile surface functiona-lization of polylactide membrane with chitooligosaccharide based on polydopamine adhesive coating[J]. Appl Surf Sci, 2016,360:858.
45Luo R F, Tang L L, Wang J, et al. Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization[J]. Colloids Surf B: Biointerfaces, 2013,106:66.
46Kim S, Park C B. Mussel-inspired transformation of CaCO3 to bone minerals[J]. Biomaterials, 2010,31(25):6628.
47Ryu J, Ku S H, Lee M, et al. Bone-like peptide/hydroxyapatite nanocomposites assembled with multi-level hierarchical structures[J]. Soft Matter, 2011, 7(16):7201.
48Chien C Y, Tsai W B. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells[J]. ACS Appl Mater Interfaces, 2013, 5(15):6975.
49Zhou Y Z. Biomimetic remineralization of dental tissue induced by polydopamine[D]. Hefei: Anhui Medical University, 2013(in Chinese).
周允芝.聚多巴胺诱导牙体组织仿生矿化的研究[D].合肥:安徽医科大学,2013.
50Kang T, Hua X L, Liang P Q, et al. Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement[J]. Compos Sci Tech-nol, 2016,123:232.
51Liu Z G, Qu S X, Zheng X T, et al. Effect of polydopamine on the biomimetic mineralization of mussel-inspired calcium phosphate cement in vitro[J]. Mater Sci Eng C, 2014,44:44.
52Yang Wufeng, Zhang Xiazhi, Wu Keke, et al. Improving cytoactive of endothelial cell by introducing fibronectin to the surface of poly L-Lactic acid fiber mats via dopamine[J]. Mater Sci Eng C,2016,69:373.
53Jo S, Kang S M, Park S A, et al. Enhanced adhesion of preosteoblasts inside 3D PCL scaffolds by polydopamine coating and mineralization[J]. Macromol Biosci 2013, 13(10):1389.
54Lee S J, Lee D, Yoon T R, et al. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering[J]. Acta Biomaterialia, 2016,40:182.
55Zhao C Y. Surface bioactivation of porous titanium with biomechanical compatibility and the bonding with bone[D].Chengdu: Sichuan University, 2007(in Chinese).
赵朝勇.生物力学相容多孔钛的表面活化及与骨界面结合研究[D].成都:四川大学,2007.
56Pan H T, Zheng Q X, Guo X D, et al. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo[J]. Colloids Surf B:Biointerfaces, 2016,142:1.
[1] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[2] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[3] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[4] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[5] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[6] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[7] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[8] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[9] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[10] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[11] 李旭,汪子孺,杨莉,张振东,张友婷,杜毅帆. 稻糠基磁性高吸油材料的仿生制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 219-222.
[12] 黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
[13] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[14] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[15] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed