Abstract: The novel temperature-sensitive porous hydrogel was synthesized by using free radical polymerization method, the raw materials of hydroxyethyl methacrylate (HEMA) and N, N-diethyl-acrylamide (DEAAm) were use as reactants. Then propyl was introduced by grafting reaction. The intermediate product and the final product were characterized by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), scanning electron microscope (SEM). The swelling and desorption kinetics of the final product were studied by weighing method, and the swelling properties and temperature response were also analyzed. Following the principle of ‘click reaction’, the creatine kinase was fixed on the matrix material of novel temperature-sensitive semi-interpenetrating porous hydrogel. The enzyme loading was measured by BCA (bicinchoninic acid) protein kit method, and the enzyme activity was measured by pH method. The experimental results showed that the novel temperature-sensitive hydrogels was successfully synthesized and the average loading of creatine kinase was 24.77 mg·g-1, the average activity of creatine kinase was 9.67 U·g-1. The novel temperature-sensitive hydrogel has good selectivity and temperature response to creatine kinase, which is of great reference for the effective utilization of creatine kinase.
黄婧欣, 曾楚楚, 郭明. 新型温敏网络半互穿多孔水凝胶的制备及其固定化酶的研究*[J]. 《材料导报》期刊社, 2017, 31(21): 158-163.
HUANG Jingxin, ZENG Chuchu, GUO Ming. Preparation of the Novel Temperature-sensitive Semi-interpenetrating Porous Hydrogel and the Use in Terms of Immobilized Enzyme. Materials Reports, 2017, 31(21): 158-163.
1 Galaev Y, Mattiasson B. Thermoereactive water-soluble polymers, nonionic surfactants, and hydrogels as reagents in biotechnology[J].Enzyme Microbial Technol, 1993,15(5):354. 2 Liu M, Tao J, Zhuo R X. Synthesis and self-assembly of amphiphi-lic poly (acrylic acid-b-dl-lactide) to form micelles for pH-responsive drug delivery[J]. Polymer, 2009,50(15):3706. 3 Okano K, Kikuchi A, Sakurai Y, et al. Temperature-responsive poly(N-isopropylacrylamide) as a modulator for alteration of hydrophilic/hydrophobic surface properties to control activation/inactivation of platelets[J]. J Controlled Release, 1995,36(1):125. 4 Jonker A M, Lowik D. Peptide and protein-based hydrogels[J]. Macromolecules, 2012,24(5):759. 5 Cicek H, Tuncel A. Immobilization of α-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylm ethacrylate copol ymer gel[J]. J Polym Sci Part A:Polym Chem, 2015,36(4):543. 6 Kutayama S, Hirokawa Y, Tanaka T. Reentrant phase transition in acrylamide-derivative copolymer gels[J].Macromolecules, 1984,17(12):2641. 7 Cao Yang. Research progress of immobilized enzyme carrier mate-rials[J]. Heilongjiang Science and Technology Information, 2009,6(9):1(in Chinese). 曹阳. 固定化酶载体材料的研究进展[J]. 黑龙江科技信息, 2009,6(9):1. 8 Chen Yong, Jia Yun, Chen Shilan. Novel temperature responsive intelligent material—study on N,N-two ethyl acrylamide[J]. J Chongqing University of Science and Technology, 2008, 10(4): 47(in Chinese). 陈勇, 贾云, 陈世兰. 新型温度响应智能材料—聚N,N-二乙基丙烯酰胺的研究[J]. 重庆科技学院学报, 2008,10(4):47. 9 Yang C H, Wang M X, Haider H, et al. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations[J]. Macromolecules, 2013, 5(21):10418. 10Yu H, Grainger D W. Thermo-sensitive swelling behavior in crosslinked N-isopropylacrylamide networks: Cationic, anionic, and ampholytic hydrogels[J]. J Appl Polym Sci, 2010,49(9):1553. 11Yu Xisheng, Tong Shuixin, Sun Yishi. Study on synthesis and pro-perties of temperature sensitive hydrogel[J]. J Polym, 1989,3(4):488(in Chinese). 余锡胜, 佟水心, 孙以实. 温度敏感性水凝胶合成反应及性能研究[J]. 高分子学报, 1989,3(4):488. 12Katayama S, Hirokawa Y, Tanaka T. Reentrant phase transition in acrylamide-derivative copolymer gels[J]. Macrololecules, 1984,17(12):2641. 13Aurica P, Chiriac L E, Nita M T, et al. Multilayered structure based on poly (N,N-dimethy l-acrylamide-co-3,9-divinyl-2,4,8,10-tetraoxaspiro(5.5)undecane) prepared in a multiphase gelation process[J]. Int J Pharmaceut, 2013, 456(1): 21. 14Kolb H C, Finn M G, Sharpless K B. Click chemistry: Diverse chemical function from a few good reactions[J]. Angewandte Chemie Int Ed, 2001,40(11):2004. 15Vsevolod V, Rostovtsev, Luke G, et al. A stepwise huisgen cycloaddition process: copper(I)- catalyzed regioselective ‘ligation’ of azides and terminal alkynes[J]. Angewandte Chemie Int Ed, 2002,41(14):2596. 16Morten M, Christian W T. Cu-catalyzed azide-alkyne cycloaddition[J]. Chem Rev, 2008,108(8):2952. 17Wang Q, Hawker C. Toward a few good reactions: celebrating click chemistry’s first decade[J]. Chem An Asian J, 2011, 6(10): 2568. 18Hizal G, Tunca U, Sanyal A. Discrete macromolecular constructs via the diels-alder ‘click’ reaction[J]. J Polym Sci Part A: Polym Chem, 2011,49(19):4103. 19Tasdelen M A. Diels-alder ‘click’ reactions: recent applications in polymer and material science[J]. Polym Chem, 2011, 2(10): 2133. 20Abaee M S, Hamidi V, Mojtahedi M M. Ultrasound promoted aminolysis of epoxides in aqueous media: a rapid procedure with no ph adjustment for additive-free synthesis of β-aminoalcohols[J]. Ultrasonics Sonochemistry, 2008,15(5):823. 21Fringuelli F, Piermatti O, Pizzo F, et al. Ring opening of epoxides with sodium azide in water a regioselective ph-controlled reaction[J]. J Organ Chem, 1999,64(31):6094. 22Katti A, Shimpi N, Roy S, et al. Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-Modified silica aerogels[J]. Chem Mater, 2006,18(2):285. 23Yuan Weizhong, Zhang Jingcun, Wei Jingreng. Synthesis of well-defined polymer via a combination of click chemistry and living radical polymerization[J]. Progr Chem, 2011,23(14):760(in Chinese). 袁伟忠, 张锦春, 魏静仁. 点击化学与活性自由基聚合联用构建特殊结构聚合物[J]. 化学进展, 2011,23(14):760. 24Qiu Suyan, Gao Sen, Lin Zengyu, et al. Advances in click chemistry[J]. Progr Chem, 2011,23(14):637(in Chinese). 邱素艳, 高森, 林振宇, 等. 点击化学最新进展[J]. 化学进展, 2011,23(14):637. 25Chen Lin, Shi Naien, Qian Yan, et al. Click chemistry and functio-nal organic/polymeric materials[J]. Progr Chem, 2010,22(2):406(in Chinese). 陈琳, 石乃恩, 钱妍, 等. 点击化学与功能有机/聚合物材料[J]. 化学进展, 2010,22(2):406. 26Lowe A B, Hoyle C E, Bowman C N. Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis[J]. J Mater Chem, 2010, 20(23) 4745. 27Carioscia J A, Tansbury J W,Bowman C N. Evaluation and control of thiol-ene/thiol-epoxy hybrid networks[J]. Polymer, 2007,48(6):1526. 28Pounder R J, Stanford M J, Brooks P, et al. Metal free thiol-ma-leimide ‘click’ reaction as a mild functionalisation strategy for degradable polymers[J]. Chem Commun, 2008, 41(41):5158. 29Billiet L, Gok O, Dove A P, et al. Metal-free functionalization of linear polyurethanes by thiol-maleimide coupling reactions[J]. Macromolecules, 2011, 44(20):7874. 30Gindy M E, Ji S X, Hoye T R, et al. Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density[J]. Biomacromolecules, 2008, 9(10): 2705. 31Charles E, Hoyle Prof, Christopher N, et al. Thiol-ene click che-mistry[J]. Angewandte Chemie Int Ed, 2010, 49(9):1540. 32Kade M J, Burke D J, Hawker C J. The power of thiol-ene chemistry[J]. J Polym Sci Part A: Polym Chem, 2010,48(4):743. 33Hoogenhoom R. Thiol-yne chemistry: A powerful tool for creating highly functional materials[J]. Angewandte Chemie Int Ed, 2010,49(20):3415. 34Xu J T, Tao L, Boyer C, et al. Facile access to polymeric vesicular nanostructures: remarkable ω-end group effects in cholesterol and pyrene functional (Co) polymers[J]. Macromolecules, 2011,44(2):299. 35Hensarling R M, Rahane S B, Leblanc A P,et al. Thiol-isocyanate ‘click’reactions: Rapid development of functional polymeric surfaces[J]. Polym Chem, 2011,2(1):88.