Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22040117-7    https://doi.org/10.11896/cldb.22040117
  高分子与聚合物基复合材料 |
用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价
何贤会1, 杨培昕1, 卢小鸾1, 汤陆扬1, 付阳洋1, 彭黔荣2,*, 杨敏1,*
1 贵州大学药学院,贵阳 550025
2 中国烟草贵州中烟工业有限责任公司,贵阳 550025
Preparation and Evaluation of Nano Micelles Composite Thermosensitive Hydrogels for Vaginal Mucosa Administration
HE Xianhui1, YANG Peixin1, LU Xiaoluan1, TANG Luyang1, FU Yangyang1, PENG Qianrong2,*, YANG Min1,*
1 School of Pharmacy, Guizhou University, Guiyang 550025, China
2 China Tobacco Guizhou Industrial Co., Ltd., China Tobacco, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 13656KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 宫颈癌的发生与人乳头瘤病毒(HPV)感染密切相关。治疗HPV感染可有效预防宫颈癌。洛匹那韦(LPV)是Food and Drug Administration(FDA)批准的抗艾滋病病毒的治疗药物,研究发现洛匹那韦具有抗HPV病毒的活性。本工作旨在制备一种负载LPV的纳米胶束复合水凝胶载药系统,探究其通过阴道黏膜局部给药的性能。采用两亲性聚合物维生素E聚乙二醇琥珀酸酯(TPGS)和助渗透剂牛磺脱氧胆酸钠(STDC)自组装制备混合载药胶束(TPGS-STDC/LPV),混合胶束分散在温敏凝胶中形成载药纳米胶束复合温敏水凝胶(NMCH)。对TPGS-STDC/LPV的粒径、ZETA电位、形貌、包封率、载药量和释药等进行了检测,还测试了NMCH的黏膜粘附性、药物释放、透皮渗透和抗病毒活性等。实验结果表明,TPGS-STDC/LPV具有高药物包封率、高载药量,累积释放率达(96.82±2.93)%(pH=4.5,72 h),表现出酸响应释放性能;复合水凝胶具有适宜人体的温敏特性,对阴道上皮黏膜具有优异的粘附性,所制备的NMCH的LPV渗透率最好,为(54.05±2.74)%,约为游离LPV的7.4倍;NMCH具有显著的抗HPV病毒活性。该体系适合用于阴道局部给药。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何贤会
杨培昕
卢小鸾
汤陆扬
付阳洋
彭黔荣
杨敏
关键词:  HPV病毒  洛匹那韦  纳米混合胶束  纳米胶束复合温敏水凝胶  阴道局部给药    
Abstract: The occurrence of cervical cancer is closely related to infection with human papillomavirus (HPV). Treatment of HPV infection is effective for preventing the development of cervical cancer. Lopinavir (LPV) is an anti-HIV drug approved by FDA, and it was found that LPV has anti-HPV activity. The aim of this study was to develop a nano-micelles composite hydrogel drug delivery system loaded LPV and explore its perfor-mance for local administration through vaginal mucosa. LPV-loaded mixed micelles (TPGS-STDC/LPV) were prepared by the self-assembly of amphiphilic polymer TPGS, penetrant STDC, and LPV, then were dispersed into the thermosensitive hydrogel to form LPV-loaded nano-micelles composite hydrogel (NMCH). The particle size, zeta potential, morphology, entrapment efficiency, drug loading and drug release of TPGS-STDC/LPV were detected. The mucosal adhesion, drug release, transdermal penetration and antiviral activity of NMCH were also tested. The results showed that TPGS-STDC/LPV exhibited high entrapment efficiency and high drug loading, and the cumulative release of LPV achieved (96.82±2.93)% with pH of 4.5 at 72 h, Showing a good acid-response drug release. NMCH had a human temperature sensitive nature and good adhesion to the vaginal epithelial mucosa, and the skin permeation rate of LPV (54.05±2.74)% was observed about 7.4 times that of free LPV, and NMCH displayed good anti-HPV activities. This drug delivery system could be suitable for topical vaginal administration.
Key words:  HPV virus    lopinavir    nano-mixed micelles    nano micelles composite thermosensitive hydrogel    vaginal topical administration
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  O636  
基金资助: 国家自然科学基金(21562014);贵州中烟工业有限公司项目(GZZY/KJ/JS/2014_Y005-1)
通讯作者:  *杨敏,贵州大学药学院教授、硕士研究生导师,1983年贵州工学院有机化工专业本科毕业,1998年四川联合大学应用化学专业在职研究生进修班结业,2006年四川大学有机化学专业博士毕业。1983年到1999年在贵州省轻工科研所工作,1999年到贵州大学贵州至今。目前主要从事药物制剂、纳米催化和药物递送,生物材料等方面的教学与科研工作。发表论文98篇,包括Journal of Polymer Research、Tetrahedron Letters、Chemical Physics Letters、Current Pharmaceutical Analysis等。 3435391@qq.com; 彭黔荣,贵州中烟技术中心研究员,贵州大学化学与化工学院硕士生导师,1983年贵州工学院有机化工专业本科毕业,1998年四川联合大学化学工程专业硕士毕业,2004年四川大学化学工程专业博士毕业。1983年到2004年在贵州大学化工学院工作,2004年到贵州中烟工作至今。目前主要从事烟草化学、近红外光谱技术应用和凝胶化学与应用等方面的科研工作。发表论文110余篇,授权专利20项,包括Journal of Polymer Research、Tetrahedron Letters、 Chemical Physics Letters、Current Pharmaceutical Analysis、《烟草化学》等。2578973180@qq.com   
作者简介:  何贤会,贵州大学在读研究生。2019年9月贵州大学获得理学学士学位,在杨敏、彭黔荣教授的指导下进行研究。目前主要从事疏水药物纳米递送系统的研究。
引用本文:    
何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
HE Xianhui, YANG Peixin, LU Xiaoluan, TANG Luyang, FU Yangyang, PENG Qianrong, YANG Min. Preparation and Evaluation of Nano Micelles Composite Thermosensitive Hydrogels for Vaginal Mucosa Administration. Materials Reports, 2023, 37(19): 22040117-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040117  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22040117
1 Durst M, Gissmann L, Ikenberg H, et al. Proceedings of the National Academy of Sciences, 1983, 80(12), 3812.
2 Vaccarella S, Lortet-Tieulent J, Plummer M, et al. European Journal of Cancer, 2013, 49(15), 3262.
3 Bernard H U, Burk R D, Chen Z, et al. Virology, 2010, 401(1), 70.
4 Zhang Z, Li T, Zhang D, et al. BMC Microbiology, 2021, 21(1), 90.
5 Johansson C, Schwartz S. Nature Reviews Microbiology, 2013, 11(4), 239.
6 Altamura G, Power K, Martano M, et al. Scientific Reports, 2018, 8(1), 17529.
7 Deshpande R, Mansara P, Kaul-Ghanekar R. Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 2016, 37(3), 3295.
8 Leyva-Gomez G, Prado-Audelo M, Ortega-Pena S, et al. Pharmaceutics, 2019, 11(5), 217.
9 De Araujo P R, Bruschi M L. Drug Development & Industrial Pharmacy, 2012, 38(6), 643.
10 Vigani B, Faccendini A, Rossi S, et al. Pharmaceutics, 2019, 11(10), 511.
11 Mohanty D, Bakshi V, Simharaju N, et al. International Journal of Pharmaceutical Sciences and Research, 2018, 50(1), 175.
12 Soliman G M, Fetih G, Abbas A M. Drug Development and Industrial Pharmacy, 2017, 43, 399.
13 Choi S G, Lee S E, Kang B S, et al. PloS One. 2014, 9(9), e109090.
14 Tu Cu-Demir Z F, Acartürk F, Erdo An D. International Journal of Pharmaceutics, 2013, 457(1), 25.
15 Zhang Z, Lee S H, Feng S S. Biomaterials, 2012, 33(19), 4889.
16 Neuzil J, Tomasetti M, Mellick A S, et al. Current Cancer Drug Targets, 2004, 4(4), 355.
17 Zhang J, Chen R, Fang X, et al. Nano Research, 2015, 8, 201.
18 Yin M, Bao Y, Gao X, et al. Journal of Materials Chemistry, B. 2017, 5(16), 2964.
19 Wang L, Xue P, Tong M, et al. Colloids and Surfaces B, Biointerfaces, 2020, 185, 110575.
20 Gao L, Wang X, Ma J, et al. Colloids and Surfaces B, Biointerfaces, 2016, 140, 307.
21 Dhiman M K, Dhiman A, Sawant K K. AAPS PharmSciTech, 2009, 10(1), 258.
22 Zehbe I, Richard C, Lee K F, et al. Antiviral Research, 2011, 91(2), 161.
23 Ansari H, Singh P. Current HIV research, 2018, 16(4), 270.
24 Alex M R A, Chacko A J, Jose S, et al. European Journal of Pharmaceutical Sciences, 2010, 42(1-2), 11.
25 Kevin P, Diana L, Shujie G, et al. Journal of Controlled Release, 2016, 226, 88.
26 Babita G, Sarwar B, Rajendra K, et al. Journal of Drug Delivery Science and Technology, 2019, 53.
27 Trasi N S, Bhujbal S, Zhou Q T, et al. International journal of pharmaceutics, 2015, 496(2), 282.
28 IAbou-El-Naga I F, El Kerdany E D, Mady R F, et al. Parasitology International, 2017, 66(6), 735.
29 Patel G M, Shelat P K, Lalwani A N. European Journal of Pharmaceutical Sciences, 2016, 108, 50.
30 Mahajan H S, Patil P H. Colloids and Surfaces B, Biointerfaces, 2020, 194.
31 Zhou G X, Li L S, Xing J, et al. Journal of Sol-Gel Science and Techno-logy, 2017, 82, 490.
32 Yu Y L, Zheng Z Y, Yi C C, et al. Acta Pharmaceutica Sinica, 2018, 53(6), 1002 (in Chinese).
余荧蓝, 郑智元, 伊宸辰, 等. 药学学报, 2018, 53(6), 1002.
33 Schmolka I R. Journal of Biomedical Materials Research, 1972, 6(6), 571.
34 Kulbacka, Julita, Choromanska, et al. Journal of Photochemistry & Photobiology B Biology Official Journal of the European Society for Photobiology, 2016, 160, 185.
35 Cacicedo M L, Islan G A, León I E, et al. Colloids and Surfaces B, Biointerfaces, 2018, 170, 596.
36 Liu Y, Yang F J, Feng L L, et al. Acta Pharmaceutica Sinica B, 2017, 7(4), 502.
37 Yuan Y, Li S M, Mo F K, et al. International Journal of Pharmaceutics, 2006, 321(1-2), 117.
38 Gao Y Y, Liu W, Wang W, et al. Carbohydrate Polymers, 2018, 198, 329.
39 Asli C, Tamer U. Food Chemistry, 2020, 317, 126397.
40 Cuong N V, Boi N V, Ming-Fa H. International Journal of Polymer Science, 2013, 2013.
41 Jones D S, Woolfson A D, Brown A F. Pharmaceutical Research, 1997, 14(4), 450.
42 Julia H, André E, Bahador P K, et al. Journal of Applied Polymer Science, 2012, 125(1), 180.
43 Lykke M R, Becher N, Haahr T, et al. Pathogen, 2021, 10(2), 90.
44 Lee A L Z, Voo Z X, Chin W, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13274.
45 Chang G R, Li S K, Huang F Z, et al. Journal of Materials Science & Technology, 2016, 32(8), 753.
46 Frank L A, Chaves P S, D"Amore C M, et al. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 202.
47 Rossi S, Vigani B, Sandri G, et al. Expert Opinion on Drug Delivery, 2019, 16(8), 777.
48 Carla M C, Silvia R, Franca F, et al. Advanced Drug Delivery Reviews, 2015, 92, 39.
49 Pramanik S, Sali V. International Journal of Biological Macromolecules, 2021, 169, 103.
50 Frank L A, Sandri G, D'Autilia F, et al. International Journal of Nanomedicine, 2014, 9(1), 3151.
[1] 李晓玉, 连海兰. 仿贻贝水凝胶的研究进展[J]. 材料导报, 2023, 37(19): 21120186-11.
[2] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[3] 王健蓉, 张强, 范桄晗, 杨新斌, 曾仁权. 淀粉复合膜的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(21): 20080010-10.
[4] 冯颖, 李齐雪, 邵娟, 张建伟, 董鑫, 张庆瑾. 基于壳聚糖的分子印迹技术研究及应用[J]. 材料导报, 2022, 36(17): 21040121-8.
[5] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[6] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[7] 胡汉娇, 梁兴唐, 汪双双, 张霞, 尹艳镇, 尹雪斌. 羧甲基壳聚糖-羧基葡聚糖凝聚微滴的制备及其酵母细胞毒性[J]. 材料导报, 2020, 34(Z2): 496-500.
[8] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[9] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[10] 白忠祥, 但年华, 但卫华, 高然. 双醛羧甲基纤维素-胶原复合止血材料的研制[J]. 材料导报, 2018, 32(20): 3628-3633.
[11] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[12] 崔可建, 蔡超, 朱才镇. 基于植物多酚构筑新型功能材料[J]. 《材料导报》期刊社, 2018, 32(5): 755-764.
[13] 张永祥, 廖建国, 李艳群, 路善行, 段星泽. 纳米羟基磷灰石/壳聚糖复合生物材料研究*[J]. 《材料导报》期刊社, 2017, 31(17): 53-60.
[14] 薛媛, 但年华, 但卫华. 多孔胶原-β-磷酸三钙-硫酸软骨素复合膜的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(2): 8-12.
[15] 崔国廉, 但年华, 但卫华. 多巴胺表面修饰胶原膜促进细胞粘附和增殖的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 20-24.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed