Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 53-60    https://doi.org/10.11896/j.issn.1005-023X.2017.017.008
  材料综述 |
纳米羟基磷灰石/壳聚糖复合生物材料研究*
张永祥, 廖建国, 李艳群, 路善行, 段星泽
河南理工大学材料科学与工程学院,焦作454000
Research on Nano-Hydroxyapatite/Chitosan Composite Biomaterials: a Review
ZHANG Yongxiang, LIAO Jianguo, LI Yanqun, LU Shanxing, DUAN Xingze
School of Materials Science and Engineering,Henan Polytechnic University,Jiaozuo 454000
下载:  全 文 ( PDF ) ( 1657KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 骨的特殊性能决定了其在人体中起重要的功能作用,人工骨材料对骨缺损的治疗有重要意义。羟基磷灰石是人和动物骨骼的主要无机成分;壳聚糖是天然可降解多糖,降解产物为对人体组织无毒、无害的氨基葡萄糖。纳米羟基磷灰石/壳聚糖复合生物材料可以实现羟基磷灰石和壳聚糖两者的优势互补,具有优良的生物活性、生物相容性和力学性能。介绍了近年来纳米羟基磷灰石/壳聚糖复合生物材料的主要合成方法(如共混法、共沉淀法、原位沉析法、交替沉积法和模拟体液法等),并在此基础上介绍了基于纳米羟基磷灰石/壳聚糖的三元复合材料的研究及发展情况;最后,展望了纳米羟基磷灰石/壳聚糖复合生物材料未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永祥
廖建国
李艳群
路善行
段星泽
关键词:  羟基磷灰石  壳聚糖  复合材料  合成方法  生物材料    
Abstract: The special properties of bone play an important role in human body. Artificial bone material is very important for the treatment of bone defect. Hydroxyapatite is the main inorganic mineral component of human and animal bones. Chitosan is a na-tural biodegradable polysaccharide. Its degradation product is glucosamine, which is non-toxic and harmless to human tissue. Thus, the combination of hydroxyapatite and chitosan can realize their complementary advantages. Nano-hydroxyapatite/chitosan (n-HA/CS) composites have excellent biological activity, biocompatibility and mechanical properties which can be used as medical materials. In this paper, the main synthesis methods of n-HA/CS composites (such as blending method, co-precipitation method, in-situ preci-pitation method, alternate deposition method and simulated bodily fluid method) in recent years are introduced. On this basis, the research and development of multi-composite materials based on n-HA/CS are also introduced. Finally, the future development direction of n-HA/CS composites is prospected.
Key words:  hydroxyapatite    chitosan    composites    synthesis methods    biomaterials
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  O636.1  
  TB332  
基金资助: 国家自然科学基金(U1304820);河南省重点科技攻关计划项目(152102210103)
通讯作者:  廖建国:通讯作者,男,1975年生,博士,副教授,主要从事生物材料研究 Tel:0391-3986935 E-mail:liaojianguo10@hpu.edu.cn   
作者简介:  张永祥:男,1991年生,硕士研究生,主要从事生物材料研究 E-mail:513790462@qq.com
引用本文:    
张永祥, 廖建国, 李艳群, 路善行, 段星泽. 纳米羟基磷灰石/壳聚糖复合生物材料研究*[J]. 《材料导报》期刊社, 2017, 31(17): 53-60.
ZHANG Yongxiang, LIAO Jianguo, LI Yanqun, LU Shanxing, DUAN Xingze. Research on Nano-Hydroxyapatite/Chitosan Composite Biomaterials: a Review. Materials Reports, 2017, 31(17): 53-60.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.008  或          http://www.mater-rep.com/CN/Y2017/V31/I17/53
1 Burr D B. The use of finite element analysis to estimate the changing strength of bone following treatment for osteoporosis[J]. Osteoporosis Int,2016,27(9):2651.
2 Al-Namnam N M N, Kim K H, Chai W L, et al. Modified poly(caprolactone trifumarate) with embedded gelatin microparticles as a functional scaffold for bone tissue engineering[J]. J Appl Polym Sci,2016,133(30):43711.
3 Moore W R, Graves S E, Bain G I. Synthetic bone graft substitutes[J]. ANZ J Surgery,2001, 71(6):354.
4 Reinders M E, De Fijter J W, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: Results of a phase I study[J]. Stem Cells Translational Medicine,2013,2(2):107.
5 Stevens M M, George J H. Exploring and engineering the cell surface interface[J]. Science, 2005,310(5751):1135.
6 Dorozhkin S V. Calcium orthophosphates in nature, biology and medicine[J]. Materials,2009, 2(2):399.
7 Wang Q, Yan J, Yang J, et al. Nanomaterials promise better bone repair[J]. Mater Today, 2016,19(8):451.
8 Zhang L, Li Y B, Yang A P, et al. The preparation and characte-rization of porous scaffold made of nano-hydroxyapatite/chitosan composite for bone tissue engineering[J]. J Funct Mater,2005,36 (2):314(in Chinese).
张利, 李玉宝, 杨爱萍, 等. 骨组织工程用纳米羟基磷灰石/壳聚糖多孔支架材料的制备及性能表征[J]. 功能材料,2005,36(2):314.
9 Li B Q, Hu Q L, Wang M, et al. Preparation of chitosan/hydroxyapatite nanocomposite with layered structure via in-situ compositing[J]. Chem Res Chin Universities,2004,25(10):1949(in Chinese).
李保强, 胡巧玲, 汪茫, 等. 原位复合法制备层状结构的壳聚糖/羟基磷灰石纳米材料[J]. 高等学校化学学报,2004,25(10):1949.
10 Ito M, Hidaka Y, Nakajima M, et al. Effect of hydroxyapatite content on physical properties and connective tissue reactions to a chitosan-hydroxyapatite composite membrane[J]. J Biomedical Mater Res,1999, 45(3):204.
11 Yang J L, Zhou C R, Tian Y, et al. Preparation of chitosan/hydroxyapatite membrane and its effect on cell culture preparation of chitosan/hydroxyapatite membrane and its effect on cell culture[J].J Biomedical Eng,2009(3):580(in Chinese).
杨菊林, 周长忍, 田冶, 等. 壳聚糖/羟基磷灰石膜的制备及对细胞生长的影响[J]. 生物医学工程学杂志,2009(3):580.
12 Itoh S, Yamaguchi I, Suzuki M, et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo[J]. Brain Res,2003,993(1):111.
13 Li R X, Zhang X Z, Hao Q X, et al. Preparation and properties of micro-hydroxyapatite/chitosan composite membranes [J]. Chin J Mater Sci,2013,30(1):103(in Chinese).
李瑞欣, 张西正, 郝庆新, 等. 微米级煅烧羟基磷灰石/壳聚糖复合膜的制备及性能[J]. 复合材料学报,2013,30(1):103.
14 Cheng X M, Li Y B, Zhang L, et al. Preparation and characterization of nano-hydroxyapatie/chitosan composite membrane for guided bone regeneration[J]. J Funct Mater,2008,39(6):983(in Chinese).
程先苗, 李玉宝, 张利, 等. 纳米羟基磷灰石/壳聚糖复合膜的制备和表征[J]. 功能材料, 2008,39(6):983.
15 Vargas G, López J, Acevedo J L, et al. Effect of oltrasonic vibration on the particle size distribution of hydroxyapatite chemically precipitated from eggshells[J]. Phosphorus Res Bull,1999,10:250.
16 Yang S Y, Tang S Y, Tan W C, et al.Surface modification of hydroxyapatite-grafted-chitosan and biocompatibility evaluation of CS/HA-G-CS composite hydrogel [J]. Chin J Mater Res,2015,29(11):801(in Chinese).
杨慎宇, 唐三元, 谭文成, 等. 羟基磷灰石接枝壳聚糖表面改性及其复合水凝胶的生物相容性[J]. 材料研究学报,2015,29(11):801.
17 Xu H H K, Quinn J B, Takagi S, et al. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering[J]. Biomaterials,2004,25(6):1029.
18 Yamaguchi I, Tokuchi K, Fukuzaki H, et al. Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites[J]. Key Eng Mater,2000,192-195(6):673(in Chinese).
19 Yamaguchi I, Tokuchi K, Fukuzaki H, et al. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites[J]. J Biomedical Mater Res,2001,55(1):20.
20 Zhang L, Li Y B, Wei J, et al. Preparation and characterization of chitosan/nano-hydroxyapatite composite used for bone repair by co-precipitation method[J]. J Funct Mater,2005,36(3):441(in Chinese).
张利, 李玉宝, 魏杰, 等. 纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征[J]. 功能材料,2005,36(3):441.
21 Chen F, Wang Z, Lin C. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials[J]. Mater Lett,2002,57(4):858.
22 Wang L T, Zhou G, Fan Y B. Effects of nano-hydroxyapatite/chitosan(N-HA/CS) on MC3T3-E1 cell and metabolic organ in SD rats[J]. Chin J Biomedical Eng,2013,32(5):595(in Chinese).
王丽婷, 周钢, 樊瑜波. 纳米羟基磷灰石/壳聚糖 (n-HA/CS) 复合材料对 SD 大鼠代谢器官的影响[J]. 中国生物医学工程学报,2013,32(5):595.
23 Reves B T, Jennings J A, Bumgardner J D, et al. Preparation and functional assessment of composite chitosan-nano-hydroxyapatite scaffolds for bone regeneration[J]. J Funct Biomater,2012,3(1):114.
24 Rusu V M, Ng C H, Wilke M, et al. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials[J]. Biomaterials,2006,26(26):5414.
25 Wang X Q, Wenk E, Zhang X H, et al. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering[J]. J Controlled Release,2009, 134(2):81.
26 Hu Q, Li B, Wang M, et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture[J]. Biomaterials, 2004,25(5):779.
27 Hu Q L, Qian X Z, Li B Q, et al. Studies on chitosan rods prepared by in situ precipitation method [J]. Chem J Chin Universities,2003,24(3):528(in Chinese).
胡巧玲, 钱秀珍, 李保强, 等. 原位沉析法制备壳聚糖棒材的研究[J]. 高等学校化学学报,2003,24(3):528.
28 Li B Q, Hu Q L, Qian X Z, et al. Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture[J].Acta Polym Sin,2002,1(6):828(in Chinese).
李保强, 胡巧玲, 钱秀珍, 等. 原位沉析法制备可吸收壳聚糖/羟基磷灰石棒材[J]. 高分子学报,2002,1(6):828.
29 Sun Z Z, Cai R R, Pu X M, et al. Preparation and cell compatibility of chitosan-hydroxyapatite composite for bone repaire[J]. J Xiamen University:Nat Sci Ed,2010,49(5):671(in Chinese).
孙珍珍, 蔡汝汝, 蒲曦鸣, 等. 壳聚糖/羟基磷灰石复合骨修复材料的制备及细胞相容性初步研究[J]. 厦门大学学报:自然科学版,2010, 49(5):671.
30 Sun Z Z, Cai R R, Pu X M, et al. Study on preparation and perfor-mance of the CS/HA rods for bone internal fixation[J]. J Funct Mater,2011, 42(1):128( in Chinese).
孙珍珍, 蔡汝汝, 蒲曦鸣, 等. 壳聚糖/羟基磷灰石复合骨折内固定棒材的制备与性能研究[J]. 功能材料,2011,42(1):128.
31 Lu X Y, Wang X H, Qu S X, et al. Preparation of nano-hydroxya-patite/chitosan hybrids[J] .J Inorg Mater,2008,23(2):332( in Chinese).
卢晓英, 王秀红, 屈树新, 等. 纳米羟基磷灰石/壳聚糖杂化材料的制备[J]. 无机材料学报, 2008,23(2):332.
32 Lu Z H, Ma Y D, Zhao D M, et al. Preparation and properties of hydroxyapatite/chitosan composite scaffold[J]. Mater Rev:Res,2013,27(12):88(in Chinese).
卢志华, 马育栋, 赵冬梅, 等. 羟基磷灰石/壳聚糖复合支架的制备及其性能研究[J]. 材料导报:研究篇,2013,27(12):88.
33 Huang Z H, Dong Y S, Lin P H. Depositing an apatite coating in/on massive chitosan porous scaffolds by an alternate soaking method [J]. Acta Phys-Chim Sin,2009,25(7):1285(in Chinese).
黄志海, 董寅生, 林萍华. 块状壳聚糖多孔支架内交替浸渍沉积磷灰石层[J]. 物理化学学报,2009,25(7):1285.
34 Tachaboonyakiat W, Serizawa T, Akashi M. Hydroxyapatite formation on/in biodegradable chitosan hydrogels by an alternate soaking process[J]. Polym J,2001,33(2):177.
35 Rhee S H. Bone-like apatite forming ability on surface modified chitosan membrane in simulated body fluid[J]. Key Eng Mater, 2004,254-256:501.
36 Beppu M M, Santana C C. Direction of in vitro calcified chitosan membranes for technological applications[J]. Chem Eng Commun,2004, 191(9):1147.
37 Beppu M M, Santana C C. PAA influence on chitosan membrane calcification[J]. Mater Sci Eng C,2003,23(5):651.
38 Xu K, Zhao Y H, et al. Fabrication and evaluation of hydroxya-patite-chitosan scaffold via simulated body fluid biomimetic mineralization[J]. West China J Stomatology, 2016,34(1):6(in Chinese).
许可, 赵艳红, 等. 模拟体液仿生矿化法制备的羟磷灰石-壳聚糖支架的性能研究[J]. 华医口腔医学杂志,2016,34(1):6.
39 Wang X, Liu L R, Zhang Q Q. A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering [J]. Chin J Reparative Reconstructive Surgery,2007,21(2):120(in Chinese).
王新, 刘玲蓉, 张其清. 纳米羟基磷灰石-壳聚糖骨组织工程支架的研究[J]. 中国修复重建外科杂志,2007,21(2):120.
40 Hu H, Lin C, Lui P P Y, et al. Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants[J]. J Biomedical Mater Res A,2003,65(1):24.
41 Li J, Han Z J, Wei Y, et al. In-situ biomimetic fabrication and cha-racterization of nano- hydroxyapatite/chitosan composite microspheres [J]. J Inorg Mater,2014,29(12):1327(in Chinese).
李健, 韩志军, 魏延, 等.纳米羟基磷灰石/壳聚糖复合微球的原位仿生制备及表征[J]. 无机材料学报,2014,29(12):1327.
42 Cai S, Zhou C L, Li J Y, et al. Fabrication of macroporous biphasic calcium phosphate ceramics[J]. Chin J Ceram,2001,22(3):187(in Chinese).
蔡舒, 周彩楼, 李金有, 等. 双相磷酸钙多孔陶瓷的制备[J]. 陶瓷学报,2001,22(3):187.
43 Zhao F, Yin Y J, Song X F, et al. study on chitosan-gelatin/hydroxyapatite composite scaffolds—Preparation and morphology [J]. Chin J Reparative Reconstructive Surgery,2001, 15(5):276(in Chinese).
赵峰, 尹玉姬, 宋雪峰, 等. 壳聚糖-明胶网络/羟基磷灰石复合材料支架的研究——制备及形貌[J]. 中国修复重建外科杂志,2001,15(5): 276.
44 Matsuda A, Ikoma T, Kobayashi H, et al. Preparation and mecha-nical property of core-shell type chitosan/calcium phosphate compo-site fiber[J]. Mater Sci Eng C,2004, 24(6-8):723.
45 Jin H H, Kim D H, Kim T W, et al. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering[J]. Int J Biological Macromolecules,2012,51(5):1079.
46 Yu C C, Chang J J, Lee Y H, et al. Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering[J]. Mater Lett, 2013,93:133.
47 Liu Y T, Long T, Tang S, et al. Biomimetic fabrication and biocompatibility of hydroxyapatite/chitosan nanohybrid coatings on porous carbon fiber felts[J]. Mater Lett,2014, 128(10):31.
48 Jamalpoor Z, Mirzadeh H, Joghataei M T, et al. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering[J]. J Biomedical Mater Res A,2015,103(5):1882.
49 Chen J D, Yu Q F, Zhang G D, et al. Preparation and biocompatibility of nanohybrid scaffolds by in situ homogeneous formation of nano hydroxyapatite from biopolymer polyelectrolyte complex for bone repair applications[J]. Colloids Surf B: Biointerfaces, 2012,93(93):100.
50 Li M, Wang Y B, Liu Q, et al. In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide[J]. J Mater Chem B,2013,1(4):475.
51 Chen L, Hu J X, Ran J B, et al. A novel nanocomposite for bone tissue engineering based on chitosan-silk sericin/hydroxyapatite: Bio-mimetic synthesis and its cytocompatibility[J]. RSC Adv,2015,5(69):56410.
52 Teng S H, Liang M H, Wang P, et al. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization[J]. Mater Sci Eng C,2016,58:610.
53 Chen F P, Hu Q L, Chen L, et al. Preparation of magnetic iron oxide/hydroxyapatite/chitosan rods by in situ precipitation [J]. Acta Polym Sin, 2006,1(6):756(in Chinese).
陈福平, 胡巧玲, 陈亮, 等. 原位沉析法制备磁性氧化铁羟基磷灰石/壳聚糖棒材[J]. 高分子学报,2006,1(6):756.
54 Jiang L Y, Li Y B, Zhang L, et al. Preparation and characterization of nano-hydroxyapatite/chitosan/carboxymethyl cellulosecomposite used for bone repair[J]. J Funct Mater,2007,38(5):798(in Chinese).
蒋柳云, 李玉宝, 张利, 等. 纳米羟基磷灰石/壳聚糖/羧甲基纤维素三元复合骨修复材料的制备和性能研究[J]. 功能材料,2007,38(5):798.
55 Shakir M, Jolly R, Khan M S, et al. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies[J]. Int J Biological Macromolecules,2015,80:282.
56 Mou Y H, Li Y B, Xiang H Z, et al. The preparation and characte-rization of porous scaffold made of nano-hydroxyapatite/chitosan/polyamide 66 composite[J]. Polym Mater Sci Eng,2006,22(5):213(in Chinese).
牟元华, 李玉宝, 向鸿照, 等. 多孔 n-HA/CS/PA66 三元复合支架材料的制备及性能[J]. 高分子材料科学与工程,2006,22(5):213.
57 Zhang C Y, Zhang C L, Wang J F, et al. Fabrication and in vitro investigation of nanohydroxyapatite, chitosan, poly (L-lactic acid) ternary biocomposite[J]. J Appl Polym Sci, 2013,127(3):2152.
58 Qiu M D, Wang X Y, Li X, et al. Preparation and microanalysis of hydroxyapatite/chitosan-sodium alginate composite materials[J]. Mater Rev:Res,2013, 27(2):60(in Chinese).
仇满德, 王晓燕, 李旭, 等. 纳米羟基磷灰石/壳聚糖-海藻酸钠复合材料的制备及微分析[J]. 材料导报:研究篇,2013,27(2):60.
59 Fan Z H, Zhou L, Ouyang J J, et al. Preparation and performance of polyvinyl alcohol/chitosan/nano-hydroxyapatite via a chem-physical method[J]. Chin J Appl Chem, 2014,31(1):61(in Chinese).
范志恒, 周莉, 欧阳君君, 等. 化学-物理法制备聚乙烯醇/壳聚糖/纳米羟基磷灰石复合水凝胶及其性能[J]. 应用化学,2014,31(1):61.
60 Yu Y, Zhang H, Sun H, et al. Nano-hydroxyapatite formation via co-precipitation with chitosan-g-poly (N-isopropylacrylamide) in coil and globule states for tissue engineering application[J]. Frontiers Chem Sci Eng,2013,7(4):388.
61 Liu Y L, Hunziker E B, Layrolle P, et al. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity[J]. Tissue Eng,2004,10(1-2):101.
62 Yang X B, Tare R S, Partridge K A, et al. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: Osteoconductive biomimetic scaffolds for tissue engineering[J]. J Bone Mine-ral Res,2003,18(1):47.
63 Li Y, Liu T, Zheng J, et al. Glutaraldehyde-crosslinked chitosan/hydroxyapatite bone repair scaffold and its application as drug carrier for icariin[J]. J Appl Polym Sci,2013,130(3):1539.
64 Huang D J, Zhang W X, Liu J B, et al. Preparation and performance of nanohydroxyapatite/chitosan-gelatin composite microspheres[J]. Chin J Tissue Eng Res,2009, 13(16):3097(in Chinese).
黄大建, 张文熊, 刘晶冰, 等. 纳米羟基磷灰石/壳聚糖-明胶复合微球的制备及性能[J]. 中国组织工程研究,2009,13(16):3097.
65 Sivakumar M, Manjubala I, Rao K P. Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres[J]. Carbohydr Polym,2002,49(3): 281.
66 Bhat K A, Padmavathi R, Sangeetha D. Chlorotrimethyl silane coupled chitosan/polyacrylamide/nano hydroxyapatite composites for controlled drug release applications[J]. J Biomater Tissue Eng,2012, 2(3):244.
67 Liang W H, Tan Z J, Qu J S, et al. Properties of hydroxyapatite/chitosan-naringin drug delivery systems[J]. J Funct Mater,2015,46(19):19131(in Chinese).
梁卫寰, 谭竹钧, 区硕俊, 等. 羟基磷灰石/壳聚糖-柚皮苷缓释材料的制备及性能初探[J]. 功能材料,2015,46(19):19131.
68 Shi P J, Zuo Y, Li X W, et al. Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy[J]. J Biomedical Mater Res A,2010,93(3):1020.
69 Huang J L, Ma T, Tang H, et al. Vancomycin cationic liposome combined with nano-hydroxyapatite/chitosan/konjac glucomannan scaffold for treatment of infected bone defects in rabbits [J]. Chin J Reparative Reconstructive Surgery,2012,26(2):190(in Chinese).
黄金亮, 马涛, 唐辉, 等. 万古霉素阳离子脂质体复合纳米羟基磷灰石, 壳聚糖/魔芋葡甘聚糖治疗兔慢性感染性骨缺损[J]. 中国修复重建外科杂志,2012,26(2):190.
70 Lv C X, Yao Z H. Preparation and characterization of nano-hydroxyapatite/chitosan-chondroitin sulfate composite materials[J]. Acta Mater Compos Sin,2007,24(1):110(in Chinese).
吕彩霞, 姚子华. 纳米羟基磷灰石/壳聚糖-硫酸软骨素复合材料的制备及其性能研究[J]. 复合材料学报,2007,24(1):110.
71 Mukherjee D P, Tunkle A S, Roberts R A, et al. An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthe-tic bone graft material[J]. J Biomedical Mater Res B: Appl Biomater,2003,67(1):603.
72 Peng C, Yang T F. Osteogenesis and revascularization of nano-hydroxyapatite/chitosan artificial bone[J]. Chin J Tissue Eng Res,2007,11(40):8025(in Chinese).
彭超, 杨天府. 纳米羟基磷灰石/壳聚糖复合人工骨的成骨及再血管化[J]. 中国组织工程研究与临床康复,2007,11(40):8025.
73 Hao Z T, Feng W, Hao T, et al. Study on bone marrow mesenchymal stem cells derived osteoblasts and endothelial cells compound with chitosan/hydroxyapatite scaffold to construct vascularized tissue engineered bone[J]. Chin J Reparative Reconstructive Surgery,2012,26(4):489(in Chinese).
郝增涛, 冯卫, 郝廷, 等. BMSCs 来源成骨细胞和内皮细胞复合壳聚糖-羟基磷灰石多孔支架构建血管化组织工程骨研究[J]. 中国修复重建外科杂志,2012,26(4):489.
74 Wang J C, Xue B, Ge K K, et al. Controlled release by novel lysostaphin-loaded hydroxyapatite/chitosan composites[J]. Acta Pharmaceutica Sin,2014,49(9):1331(in Chinese).
王金成, 薛白, 葛葵葵, 等. 搭载溶葡萄球菌酶羟基磷灰石/壳聚糖复合材料的可控释放[J]. 药学学报,2014,49(9):1331.
75 Zhang H, Chen J D, Pan P P, et al. In situ preparation of chitosan/hydroxyapatite drug sustaining release microsphere [J]. Rare Metal Mater Eng,2014,43(s1):243(in Chinese).
张惠, 陈景帝, 潘盼盼, 等. 壳聚糖原位复合纳米羟基磷灰石缓释微球[J]. 稀有金属材料与工程,2014,43(s1):243.
76 Teng S H, Ding C C,et al. In-situ synthesis of chitosan/hydroxyapatite composite microspheres and their in vitro drug release behavior[J]. Polym Mater Sci Eng,2015,31(10):38(in Chinese).
滕淑华, 丁翠翠, 等. 壳聚糖/羟基磷灰石复合微球的原位合成及体外释药性能[J]. 高分子材料科学与工程,2015,31(10):38.
77 Zhu K P, Sun J, Ye S, et al. A novel hollow hydroxyapatite microspheres/chitosan composite drug carrier for controlled release[J]. J Inorg Mater,2016,31(4):434.
78 Zhou L, Wu F Q, Luo Z K, et al. Preparation and properties research of porous drug-delivery nano-hydroxy apatite/polyamide/chitosan composite materials[J]. Chem Res Appl, 2017,29(1):89(in Chinese).
周莉, 吴凤群, 罗仲宽, 等. 多孔载药纳米羟基磷灰石/聚酰胺/壳聚糖复合材料的制备与性能[J]. 化学研究与应用,2017,29(1):89.
79 Kokubo T, Kim H M, Kawashita M, et al. Review bioactive me-tals: Preparation and properties[J]. J Mater Sci: Mater Medicine,2004, 15(2):99.
80 Ge S R, Zhang F, Li M T, et al. Preparation of hydroxyapatite/chitosan-transforming growth factor-β1 composite coating on titanium surfaces and its effect on the attachment and proliferation of osteoblasts[J]. West China J Stomatology,2016,34(3):229(in Chinese).
苟诗然, 张帆, 李萌婷, 等. 钛表面羟磷灰石/壳聚糖-转化生长因子-β1 缓释微球复合涂层的制备及其对成骨细胞黏附与增殖的影响[J]. 华西口腔医学杂志,2016,34(3):229.
81 Ma X Y, Feng Y F, Ma Z S, et al. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite compo-site coating on porous titanium surfaces[J]. Biomaterials,2014,35(26):7259.
82 Wang Y B, Lu X, Li D, et al. Preparation of hydroxyapatite/chitosan composite coatings on titanium by pulsed electrochemical deposition [J]. Acta Polym Sin,2011(11):1244(in Chinese).
王英波, 鲁雄, 李丹, 等. 脉冲电化学沉积法制备羟基磷灰石/壳聚糖复合涂层的研究[J]. 高分子学报,2011(11):1244.
83 Lu X, Wang Y B, Liu Y R, et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol-gel techniques[J]. Mater Lett,2007,61(18):3970.
84 Wang G Q, Zver′kov D A, Zhang N S. Titanium based hydroxyapatite/chitosan coating prepared by microarc oxidation process and its biological characteristics[J]. Rare Metal Mater Eng,2013, 42(12):2586(in Chinese).
王国卿, Zver′kov D A, 张乃生. 微弧氧化法制备钛基HA/CS涂层及其生物学特性[J]. 稀有金属材料与工程,2013,42(12):2586.
85 Xu M Q, Huang J H, et al. Histopathological study of bone-induced sustained-release nano-magnetic composite for repairing bone defect[J]. Shenzhen J Integrated Traditional Chinese and Western Medicine, 2016,26(12):4(in Chinese).
许美权, 黄江鸿, 等. 骨诱导缓释纳米磁性复合材料修复骨缺损的病理形态学研究[J]. 深圳中西医结合杂志,2016,26(12):4.
86 Wang X W, Hu Y W, Li L Y, et al. Novel magnetic bone cement for tumor magnetic hyperthermia[J]. Sci Technol Rev,2014,32(30):40(in Chinese).
王晓文, 胡妍文, 李利亚, 等. 应用于肿瘤磁感应热疗技术的磷酸钙磁性骨水泥介质的研究[J]. 科技导报,2014,32(30):40.
87 Tang Z H, Wang X W, Zhang Y R, et al. Cytotoxicity of the magnetic bone cement in vitro[J]. J Clinical Rehabilitative Tissue Eng Res,2013,17(21):3937(in Chinese).
唐正海, 王晓文, 张友仁, 等. 磁性复合骨水泥的体外细胞毒性[J]. 中国组织工程研究, 2013,17(21):3937.
88 Hu Y W, Wang X W, Tang Z H, et al.Preparation and characterization of polymethylmethacrylate-based magnetic bone cements containing micron carbonyl iron powder[J]. J Clinical Rehabilitative Tissue Eng Res,2013,17(47):8155(in Chinese).
胡妍文, 王晓文, 唐正海, 等. 微米级羰基铁粉磁性骨水泥的制备与表征[J]. 中国组织工程研究,2013,17(47):8155.
89 王水明, 薛蕾, 左红艳, 等. 恒定磁场暴露对雄性大鼠生殖影响研究[C]//第13届中国体视学与图像分析学术会议.太原, 2013.
90 商澎, 谢丽, 骞爱荣, 等. 不同强度静磁场对骨组织和骨组织细胞作用的研究[C]//全国生物磁学会议论文集.太原,2012:182.
91 Li J P, Chen S, Peng H, et al. Effects of low-frequency pulsed electromagnetic fields therapy on peroxisome proliferator-activated receptor-γ2 and Runt-related transcription factor 2 expression in ste-roid-induced avascular necrosis of femoral head in rats[J]. Chin J Experimental Surgery,2015,32(7):1578(in Chinese).
李建平, 陈森, 彭昊, 等. 低频脉冲电磁场对激素性股骨头坏死骨组织过氧化物酶体增殖物激活受体-γ2及Runt相关转录因子2表达的影响[J]. 中华实验外科杂志,2015,32(7):1578.
92 Ma M, Zhang B, Guo Y C. Preparation and in vitro cytological eva-luation of bone-like apatite in[J]. Sci Technol Gelatin,2013,33(1):38(in Chinese).
马铭, 张兵, 郭燕川. 类骨磷灰石的体外制备及体外细胞学评价[J]. 明胶科学与技术,2013, 33(1):38.
93 Yan Q C, Tomita N, Ikada Y. Effects of static magnetic field on bone formation of rat femurs[J]. Medical Eng Phys,1998,20(6):397.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed