Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20080010-10    https://doi.org/10.11896/cldb.20080010
  高分子与聚合物基复合材料 |
淀粉复合膜的制备、性能及应用研究进展
王健蓉1, 张强2, 范桄晗2, 杨新斌3, 曾仁权1,3,*
1 西南大学动物医学院,重庆 402460
2 西南大学动物科学技术学院,重庆 402460
3 西南大学荣昌校区基础部,重庆 402460
Research Process on Preparation, Properties and Application of Starch Composite Films
WANG Jianrong1, ZHANG Qiang2, FAN Guanghan2, YANG Xinbin3, ZENG Renquan1,3,*
1 College of Veterinary Medicine, Southwest University, Chongqing 402460, China
2 College of Animal Science and Technology, Southwest University, Chongqing 402460, China
3 Department of Basic Science, Southwest University Rongchang Campus, Chongqing 402460, China
下载:  全 文 ( PDF ) ( 4541KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物经济正在加速改变食品、环境、医疗和能源等行业,这引起了工商业、学术界和政府的高度关注,因此对天然高分子等生物资源的研究、开发和利用意义重大。天然淀粉因具有来源广泛、价格低廉、无毒、无免疫原、可生物降解和再生、黏附性和生物相容性良好等优点而倍受青睐,但单淀粉膜却有耐水性差、强度低等缺陷,通过化学键和分子间作用力与其它材料复合可改善其性能。本文综述了用纤维素、壳聚糖、蛋白质、脂肪族聚酯、聚乙烯醇、聚烯烃塑料、纳米氧化物、黏土、磷(膦)酸锆和纤维等改性淀粉,通过溶剂浇铸、压塑、挤出吹塑和注塑成型等制备复合膜,总结了这些复合膜的耐水性、力学性能、生物降解性、水蒸气透过性、热稳定性、相容性和抗菌性及其在食品包装、环境和生物医药等领域的应用。最后,展望了超临界流体、超声活化等技术处理改性后的淀粉有利于膜性能的改善;生物相容性良好的新型插层材料是未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王健蓉
张强
范桄晗
杨新斌
曾仁权
关键词:  淀粉  复合膜  溶剂浇铸  耐水性  力学性能    
Abstract: The Bioeconomy has attracted extensive attention from industry and commerce, academia and government owing to the fast-paced transformation of food, environment, medicine, energy and other industries. Thus, it is of vital significance to effectively analyze, develop, and utilize biological resources such as natural macromolecules. Natural starch is favored due to its wide source, low price, non-toxicity, non-immunogenicity, biodegradation, regeneration, excellent adhesion and biocompatibility. However, starch films exhibit poor water resistance and strength. In this respect, the functional properties of the starch films can be improved by blending them with other materials owing to the chemical bonding and intermolecular forces. This review introduces the preparation of starch composite films with cellulose, chitosan, protein, aliphatic polyester, polyvinyl alcohol, polyolefin plastics, nano-oxide, clay, zirconium phosphate (phosphonate) and fiber by solvent casting, compression, extrusion and injection blow molding. And then it summarizes the water resistance, mechanical properties, biodegradability, water vapor permeability, thermal stability, compatibility and bacterial resistance of composite films, and discusses the applications of composite films in the food packaging, environment and biomedicine fields. This review prospects that the supercritical fluid and ultrasonic activation impart the modified starch with improved film properties, and the research direction is at excellent biocompatibility intercalation material in future.
Key words:  starch    composite film    solvent casting    water resistance    mechanical property
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  O636.1+2  
  TS206.4  
基金资助: 国家自然科学基金(21172182)
通讯作者:  * zrq313@163.com   
作者简介:  王健蓉,2019年6月毕业于四川民族学院,获得农学学士学位。现为西南大学动物医学院兽医硕士专业研究生,师从曾仁权教授,主要从事新型药物载体材料研究。
曾仁权,1988年6月毕业于四川师范大学,获理学学士学位;1999年6月毕业于西南师范大学,获工学硕士学位;2007年6月毕业于四川大学,获理学博士学位。现为西南大学教授,主要从事新型功能材料的制备、性能及应用研究,完成多项国家及省部级科研项目,已在Journal of Molecular Catalysis A: Chemical、Journal of Organometallic Chemistry、Inorganic Chemistry Communications、Medicinal Chemistry Research、《无机化学学报》《应用化学》《材料导报》等期刊发表10余篇论文。
引用本文:    
王健蓉, 张强, 范桄晗, 杨新斌, 曾仁权. 淀粉复合膜的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(21): 20080010-10.
WANG Jianrong, ZHANG Qiang, FAN Guanghan, YANG Xinbin, ZENG Renquan. Research Process on Preparation, Properties and Application of Starch Composite Films. Materials Reports, 2022, 36(21): 20080010-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080010  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20080010
1 McCready R M, Hassid W Z. Journal of the American Chemical Society, 1943, 65(6), 1154.
2 Han W F, Lin Q L, Zhao S M, et al. Food Science, 2019, 40(23), 277(in Chinese).
韩文芳, 林亲录, 赵思明, 等.食品科学, 2019, 40(23), 277.
3 Zhao M X, Bao Y L, Liu P L. Food Science, 2018, 39(11), 284(in Chinese).
赵米雪, 包亚莉, 刘培玲.食品科学, 2018, 39(11), 284.
4 Sarko A, Wu H C H. StarchStärke, 1978, 30(3), 73.
5 Zhang G, Venkatachalam M, Hamaker B R. Biomacromolecules, 2006, 7(11) 3259.
6 Hassan M M, Guen M J, Tucker N, et al. Cellulose, 2019, 26(7), 4463.
7 Cha D D, Guo B, Li B G, et al. Progress in Chemistry, 2019,31 (1),156(in Chinese).
查东东, 郭斌, 李本刚, 等.化学进展, 2019, 31(1), 156.
8 Cha D D, Zhou W, Yin P, et al. Progress in Chemistry, 2019, 31(7), 1044(in Chinese).
查东东, 周文, 银鹏, 等.化学进展, 2019, 31(7), 1044.
9 Cheng G, Zhou M, Wei Y J, et al. Polymer Composites, 2019, 40(S1), E365.
10 Wu M, Wang J, Ge Q, et al. International Journal of Biological Macromolecules, 2018, 118 988.
11 Sun Y D, Chen Q F, Lyu S S, et al. Materials Reports A:Review Papers, 2016, 30(11), 68(in Chinese).
孙亚东, 陈启凤, 吕闪闪, 等.材料导报:综述篇, 2016, 30(11), 68.
12 Liu Y, Zhou G F, Li C, et al. Materials Reports A:Review Papers, 2015, 29(9), 73(in Chinese).
刘娅梅, 周贵凤, 李超, 等.材料导报:综述篇, 2015, 29(9), 73.
13 Li M, Liu P, Zou W, et al. Journal of Food Engineering, 2011, 106(1), 95.
14 Wolff I A, Davis H A, Cluskey J E, et al. Industrial & Engineering Chemistry, 1951, 43(4), 915.
15 Yun D W, Cai H H, Liu Y P, et al. RSC Advances, 2019, 9(53), 309.
16 Wawro D, Bodek A, Bodek K H, et al. Fibres & Textiles in Eastern Europe, 2018, 26(6), 102.
17 Chen J.Preparation and properties of microcrystalline cellulose/thermoplastic starch-based composites. Ph.D. Thesis, Jiangnan University, China, 2019 (in Chinese).
陈杰. 微晶纤维素/热塑性淀粉基复合材料制备及性能研究.博士学位论文,江南大学,2019.
18 Thakur V K. Green composites from natural resources, CRC Press, USA, 2013, pp.279.
19 Chen X H, Xu X D, Wang Q, et al. Food Science, 2021, 42(9), 254(in Chinese).
陈雪华, 徐欣东, 王清, 等. 食品科学, 2021, 42(9), 254.
20 Anghel N, Marius N, Spiridon I. Polymers for Advanced Technologies, 2019, 30(6), 1453.
21 Kaur K, Jindal R, Maiti M, et al. International Journal of Biological Macromolecules, 2019, 123, 826.
22 Requicha J F, Moura T, Leonor I B, et al. Journal of Orthopaedic Research, 2014, 32(7), 904.
23 Liu W Y, Wang Z J, Liu J H, et al. Packaging Journal, 2020, 2(1), 25(in Chinese).
刘文勇, 王志杰, 刘家豪, 等. 包装学报, 2020, 12(1), 25.
24 Bidzińska E, Blaszczak W, Dyrek K, et al. Starch-Stärke, 2012, 64(9), 729.
25 Shao X R, Sun H T, Jiang R P, et al. Journal of the Science of Food and Agriculture, 2018, 98, 5639.
26 Ochoa-Yepes O, Di Giogio L, Goyanes S, et al. Carbohydrate Polymers, 2019, 208, 221.
27 Manjunath L, Sailaja R R N. Polymer Composites, 2016, 37(5), 1384.
28 Prabhakar M N, Song J. International Journal of Biological Macromolecules, 2018, 119,1335.
29 Panrong T, Karbowiak T, Harnkarnsujarit N. Food Packaging and Shelf Life, 2019, 21, 100331.
30 Wang W T, Zhang H, Jia R, et al. Food Hydrocolloids, 2018, 79, 534.
31 Yang F, Long H, Xie B, et al. Journal of Applied Polymer Science, 2020, 137(20), 48694.
32 Rahman M M, Netravali A N. Composites Science and Technology, 2018, 162, 110.
33 Tavares K M, de Campos A, Mitsuyuki M C, et al. Carbohydrate Polymers, 2019, 223, 115055.
34 Khine Y Y, Stenzel M H. Materials Horizons, 2020, 7(7), 1727.
35 Noorbakhsh-Soltani S M, Zerafat M M, Sabbaghi S. Carbohydrate Polymers, 2018, 189, 48.
36 Chen J, Long Z, Wang S F, et al. Polymer Composites, 2018, 46(4), 95(in Chinese).
陈杰, 龙柱, 王双飞, 等. 塑料工业, 2018, 46(4), 95.
37 Wu H, Lei Y, Lu J, et al. Food Hydrocolloids, 2019, 97, 105208.
38 Shahriarpanah S, Nourmohammadi J, Amoabediny G. International Journal of Biological macromolecules, 2016, 93, 1069.
39 Meng W, Shi J, Zhang X, et al. International Journal of Biological Macromolecules, 2020, 152, 137.
40 Paiva D, Pereira A M, Pires A L, et al. Polymers, 2018, 10(9), 985.
41 Othman S H, Kechik N R A, Shapi'i R A, et al. Journal of Nanomate-rials, 2019, 2019,1.
42 Jia X. Preparation and properties of maize starch-based film materials. Master's Thesis, Jiangnan University, China, 2018(in Chinese).
贾雪. 玉米淀粉基薄膜材料的制备及性质研究.硕士学位论文,江南大学, 2018.
43 Zheng K W, Xiao S, Li W, et al. International Journal of Biological Macromolecules, 2019, 135, 344.
44 Suriyatem R, Auras R A, Rachtanapun P. Industrial Crops and Products, 2018, 122, 37.
45 Suriyatem R, Auras R, Rachtanapun C, et al. Polymers, 2018, 10(9), 954.
46 Jiménez A, Fabra M J, Talens P, et al. Food Hydrocolloids, 2012, 29(2), 265.
47 Berardi A, Bisharat L, Alkhatib H S, et al. Aaps Pharmscitech, 2018, 19(5), 2009.
48 Basiak E, Lenart A, Debeaufort F. Journal of the Science of Food and Agriculture, 2017, 97(3), 858.
49 Wang S, Zheng M, Yu J, et al. Journal of Agricultural and Food Chemistry, 2017, 65(9), 1960.
50 Tao F, Shi C, Cui Y. Journal of the Science of Food and Agriculture, 2018, 98(14), 5470.
51 Immel S, Lichtenthaler F W. Starch-Stärke, 2000, 52(1), 1.
52 Fanta G F, Selling G W, Felker F C, et al. Carbohydrate Polymers, 2015, 121, 420.
53 Wang R, Liu P F, Cui B, et al. International Journal of Biological Macromolecules, 2019, 124, 34.
54 Xu C, Chen C, Wu D. Carbohydrate Polymers, 2018, 182, 115.
55 Zhou X, Yang R,Wang B,et al. Carbohydrate Polymers, 2019, 222, 114912.
56 Li Y, Zhang X, Huang W, et al. Chinese Journal of Biotechnology, 2020,36(5),829(in Chinese).
李义, 张旭, 黄威, 等.生物工程学报, 2020, 36(5), 829.
57 Cinelli P, Seggiani M, Mallegni N, et al. International Journal of Mole-cular Sciences, 2019, 20(2), 284.
58 Wu C S, Liao H T. Materials Science and Engineering: C, 2017, 70, 54.
59 Cazón P, Vázquez M, Velazquez G. Carbohydrate Polymers, 2018, 195, 432.
60 Noshirvani N, Hong W, Ghanbarzadeh B, et al. International Journal of Biological Macromolecules, 2018, 107, 2065.
61 Jayakumar A, Heera K V, Sumi T S, et al. International Journal of Biological Macromolecules, 2019, 136, 395.
62 Shi M K, Lei B, Luo H, et al. Polymer Materials Science & Engineering, 2017, 33(5), 61(in Chinese).
石孟可, 雷蓓, 罗辉, 等.高分子材料科学与工程, 2017, 33(5),61.
63 Jeong H J, Baek S, Han S, et al. Advanced Functional Materials, 2018, 28(3),1704433.
64 Meimoun J, Wiatz V, Saint-Loup R, et al. Starch-Stärke, 2018, 70(1-2), 1600351.
65 Prachayawarakorn J, Sangnitidej P, Boonpasith P, et al. Carbohydrate Polymers, 2010, 81(2), 425.
66 Martins A B, Cattelan A K, Santana R M C. Polymer Bulletin, 2018, 75(5), 2197.
67 Kochkina N E, Butikova O A. International Journal of Biological Macromolecules, 2019, 139, 431.
68 Dash K K, Ali N A, Das D, et al. International Journal of Biological Macromolecules, 2019, 139, 449.
69 Shahabi-Ghahfarrokhi I, Babaei-Ghazvini A. International Journal of Biological Macromolecules, 2019, 124, 922.
70 Ni S Z, Zhang H, Dai H Q, et al. Polymers, 2018, 10(11), 1260.
71 Liu C F, Liu Z Y, Hu Y X. Progress in Chemistry, 2017, 29(11), 1395(in Chinese).
刘彩锋, 刘中云, 胡云霞.化学进展, 2017, 29(11), 1395.
72 Uddin M K. Chemical Engineering Journal, 2017, 308, 438.
73 Madhumitha G, Fowsiya J, Roopan S M, et al. International Journal of Polymer Analysis and Characterization, 2018, 23(4), 331.
74 Li J, Zhou M, Cheng G, et al. Carbohydrate Polymers, 2019, 210, 429.
75 Alexandre M, Dubois P. Materials Science & Engineering: R: Reports, 2000, 28(1), 1.
76 Yousefi A R, Savadkoohi B, Zahedi Y, et al. International Journal of Biological Macromolecules, 2019, 131, 253.
77 Wu Y, Zhang Y, Ju J, et al. Polymers, 2019, 11(6), 987.
78 Dong Y, Abdullah Z. Frontiers in Materials, 2019, 6, 1.
79 Yang X B, Fu X K, Zeng R Q. Chinese Journal of Inorganic Chemistry, 2012, 28 (3), 519(in Chinese).
杨新斌, 傅相锴, 曾仁权.无机化学学报, 2012, 28(3), 519.
80 Zhou G F, Wang Q, Zeng R Q, et al. Progress in Chemistry, 2014, 26(1), 87(in Chinese).
周贵凤, 王勤, 曾仁权, 等.化学进展, 2014, 26(1), 87.
81 Zeng R, Fu X, Sui Y, et al. Journal of Organometallic Chemistry, 2008, 693(16), 2666.
82 Deshapriya I K, Kim C S, Novak M, et al. ACS Applied Materials & Interfaces, 2014, 6(12), 9643.
83 Zeng R Q, Fu X K, Yang X B. Chemical Papers, 2011, 65(5), 676.
84 Zhang X L, Shen J L, Pan S Y, et al. Advanced Functional Materials, 2020, 30(12), 1909014.
85 Zhou G F. Systhesis of novel zirconium phosphonates and its properties as drug carrier. Master's Thesis, Southwest University, China, 2015(in Chinese).
周贵凤. 新型有机膦酸锆的合成及其作为药物载体的初步研究. 硕士学位论文,西南大学, 2015.
86 Xue C, Yin P, Yang Z, et al. China Plastics Industry, 2017, 45(1), 18(in Chinese).
薛灿, 银鹏, 杨政,等.塑料工业, 2017, 45(1), 18.
87 Pica M, Donnadio A, Bianchi V, et al. Carbohydrate Polymers, 2013, 97(1), 210.
88 Cui X Y. Study on the preparation andapplication of silver-carried zirco-nium phosphonate. Master's Thesis, Southwest University, China, 2014(in Chinese).
崔晓彦. 载银有机膦酸锆复合抗菌剂的制备及应用研究. 硕士学位论文, 西南大学, 2014.
89 Amin M R, Mahmud M A, Anannya F R. Polymer Science: Series A, 2019, 61(5), 533.
90 Mohanty A K, Vivekanandhan S, Pin J M, et al. Science, 2018, 362(6414), 536.
91 Xie Q, Li F Y, Li J F, et al. Carbohydrate Polymers, 2018, 189, 56.
92 Chang Y, Sun T, Fan C,et al. Composite Interfaces, 2018, 25(11), 981.
93 Jacob J, Peter G, Thomas S, et al. Materials Today Communications, 2019, 21, 100690.
94 Ghoshal G, Singh D. International Journal of Food Microbiology, 2020, 332, 108765.
95 Liu B, Xu H, Zhao H Y, et al. Carbohydrate Polymers, 2017, 157, 842.
96 Iamareerat B, Singh M, Sadiq M B, et al. Journal of Food Science and Technology, 2018, 55(5), 1953.
97 Sun H T. Corn straw cellulose and corn distarch phosphate based edible films. Ph.D. Thesis, Jilin University, China, 2017(in Chinese).
孙海涛. 玉米秸秆纤维素及玉米磷酸酯淀粉基可食膜的研究. 博士学位论文, 吉林大学, 2017.
98 Prakash N, Vendan S A, Sudha P N. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2016, 46(11), 1664.
99 Moradi E, Ebrahimzadeh H, Mehrani Z, et al. Environmental Science and Pollution Research, 2019, 26(34), 35071.
100 Zeng X, Zhong B, Jia Z, et al. Applied Clay Science, 2019, 171, 20.
101 Ibrahim K A, Naz M Y, Shukrullah S, et al. Scientific Reports, 2020, 10,5927.
102 Pu H, Chen L, Li X, et al. Journal of Agricultural and Food Chemistry, 2011, 59, 5738.
103 Huo W, Xie G, Zhang W, et al. International Journal of Biological Macromolecules, 2016, 87, 114.
104 Bisharat L, Barker S A, Narbad A, et al. International Journal of Pharmaceutics, 2019, 556, 311.
105 Vestri A, Pearce A K, Cavanagh R, et al. Coatings, 2020, 10(2), 125.
106 Labus K, Trusek-Holownia A, Semba D, et al. Polish Journal of Chemical Technology, 2018, 20(1), 75.
107 Wu W C, Hsiao P Y, Huang Y C. Journal of Polymer Research, 2019, 26(6), 1.
108 Eskandarinia A, Rafienia M, Navid S, et al. Journal of Polymers and the Environment, 2018, 26,3345.
109 Wang H, Wang L, Ye S, et al. Food Hydrocolloids, 2019, 88, 92.
110 Zhao G X, Huang X B, Tang Z W, et al. Polymer Chemistry, 2018,9 (26),3562.
111 Guo L, Sun C M, Li G Y, et al. Journal of Hazardous Materials, 2009, 161(1), 510.
112 Bhatt R, Ageetha V, Rathod S B, et al. Carbohydrate Polymers, 2019, 208, 441.
113 Qureshi U A, Khatri Z, Ahmed F, et al. Journal of Molecular Liquids, 2017, 244, 478.
114 Priyanka M, Saravanakumar M P. Journal of Cleaner Production, 2018, 197, 511.
115 Watts P, Smith A. Expert Opinion on Drug Delivery, 2005,2(1), 159.
116 Palugan L, Cerea M, Zema L, et al. Journal of Drug Delivery Science and Technology, 2015, 25, 1.
117 Sujka M, Pankiewicz U, Kowalski R K, et al. Polimery W Medycynie, 2018, 48(1), 25.
118 Xu J, Tan X, Chen L, et al. Carbohydrate Polymers, 2019, 215, 151.
119 Tak H Y, Yun Y H, Lee C M, et al. Carbohydrate Polymers, 2019, 208, 261.
120 Saikia C, Das M K, Ramteke A, et al. Carbohydrate Polymers, 2017, 157, 391.
121 Langer R, Vacanti J P. Science, 1993, 260(5110), 920.
122 Cheng K, Huang C, Wei Y, et al. NPG Asia Materials, 2019, 11(1), 1.
123 Lancuški A, Ammar A A, Avrahami R, et al. Carbohydrate Polymers, 2017, 158, 68.
124 Karaki N, Aljawish A, Humeau C, et al. Enzyme and Microbial Techno-logy, 2016, 90, 1.
125 Ivanovic J, Milovanovic S, Zizovic I. Starch-Stärke, 2016, 68(9-10), 821.
126 Chang Y, Yan X, Wang Q, et al. Food Chemistry, 2017, 227, 369.
127 Ren Fei, Wang J W, Xie F W, et al. Green Chemistry, 2020, 22(7),2162.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 陈渊, 何正绩, 杨家添, 胡华宇, 梁恣荣, 李琼, 秦毓才. 新型丙烯酸接枝淀粉减水剂的制备及性能研究[J]. 材料导报, 2022, 36(8): 20090155-7.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[14] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[15] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed