Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20070180-9    https://doi.org/10.11896/cldb.20070180
  金属与金属基复合材料 |
Mg-Sm系镁合金的研究进展
杨来东1,2, 李全安1,3, 陈晓亚1,3, 兖利鹏1,3
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 陇东学院机械工程学院,甘肃 庆阳 745000
3 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
Recent Advance of Mg-Sm System Alloys
YANG Laidong1,2, LI Quan'an1,3, CHEN Xiaoya1,3, YAN Lipeng1,3
1 School of Materials Science and Engineering,Henan Univerisity of Science and Technology, Luoyang 471023, Henan, China
2 College of Mechanical Engineering, Longdong University, Qingyang 745000, Gansu, China
3 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 2322KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为最轻的金属结构材料,具有广泛的发展潜力,但其强度和塑性比轻质结构材料铝合金低,限制了镁合金的应用。合金化是提高镁合金力学性能的一种有效途径,通过加入适当的合金元素,来改善镁合金的力学性能和成形性能。如常见的ZK系、AZ系等变形镁合金具有优异的成型性能,但由于其室温和高温强度仍然较低,限制了ZK系、AZ系镁合金的适用范围。稀土元素Sm在Mg中有较高的固溶度,且随着温度降低,其固溶度减小,形成了过饱和的固溶体,时效处理后析出耐热性能好的含Sm的析出相,强化Mg基体;因此Mg-Sm系镁合金具有良好的固溶强化和时效硬化响应。采用多元合金化的思路,在Mg-Sm系镁合金中加入Gd、Y、Nd、Zn、Al、Ca等元素,改善合金的显微组织,进一步提高合金的室温和高温力学性能。国内外学者对Mg-Sm系镁合金的时效过程、时效析出相以及力学性能进行了大量的研究,取得了大量的研究成果。
本文在总结Mg-Sm系合金的研究成果的基础上,按照不同合金体系系统地介绍了Mg-Sm-Gd系、Mg-Sm-Y系、Mg-Sm-Nd系、Mg-Sm-Zn系、Mg-Sm-Al系和Mg-Sm-Ca系合金在不同热处理状态和成型工艺下的组织和性能,综述了合金化对Mg-Sm系合金显微组织和力学性能的影响,以及Mg-Sm系合金时效析出的研究进展,提出了目前Mg-Sm系合金研究中存在的问题,并对未来的研究工作进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨来东
李全安
陈晓亚
兖利鹏
关键词:  Mg-Sm系合金  显微组织  时效析出  力学性能    
Abstract: As the lightest metal structural material, magnesium alloy has good application prospects, but its strength and plasticity are lower than that of aluminum alloy, which limits the application of magnesium alloy. The alloying is an effective means to improve the strength and promote the microstructures of magnesium alloy. Many magnesium alloy products, such as commercial ZK system and AZ system, which have extended the application of the range of magnesium alloy. However, the strength of the commercial ZK system and AZ system are lower than that of the aluminum alloy, and thermostability is poor. Sm has good solution strengthening and aging hardening for magnesium alloy due to the high solid solubility of Sm in Mg at elevated temperature and it decreases with the decreasing temperature. Addition some alloying elements to the Mg-Sm alloys, such as Gd, Y, Nd, Zn, Al and Ca, could enhance the plasticity and the room temperature and elevated temperature strength of Mg-Sm system alloys. Researchers have conducted a lot of study on the mechanical properties, aging process, aging precipitates, crystallographic characteristics of aging precipitates and mechanical properties of Mg-Sm system alloys.
Based on the summary of the research results of Mg-Sm based-alloys, this paper systematically introduces the microstructures and mechanical properties of Mg-Sm-Gd, Mg-Sm-Y, Mg-Sm-Nd, Mg-Sm-Zn, Mg-Sm-Al, and Mg-Sm-Ca system alloys under different heat treatment state and forming process, and summarizes the effect of alloying on the microstructures and mechanical properties of Mg-Sm system alloys, and research progress on aging precipitation of the system alloys. Meanwhile, a few critical scientific problems of the current research are pointed out and future research is prospected.
Key words:  Mg-Sm system alloys    microstructure    aging precipitation    mechanical property
发布日期:  2022-04-07
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51571084);中原英才计划—中原青年拔尖人才(豫组通[2021]44号);河南省自然科学基金(222300420435)
通讯作者:  q-ali@163.com   
作者简介:  杨来东,2008年毕业于兰州大学,获得学士学位,现为河南科技大学材料科学与工程学院博士研究生,在李全安教授的指导下进行研究;目前主要从事高强耐热镁合金的设计与开发。
李全安,1988年于西安交通大学获得硕士学位,2000年于四川大学获得博士学位。现任河南科技大学教授、博士研究生导师。主要从事稀土功能材料、高性能镁合金和稀土铝合金等方面的研究。主持国家自然科学基金、河南省杰出人才基金、河南杰出青年基金等项目10余项。发表学术论文300余篇,授权国家发明专利20余项。
引用本文:    
杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
YANG Laidong, LI Quan'an, CHEN Xiaoya, YAN Lipeng. Recent Advance of Mg-Sm System Alloys. Materials Reports, 2022, 36(7): 20070180-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070180  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20070180
1 Ding W J, Fu P H, Peng L M, et al. Spacecaft Engineering, 2011, 28(2), 103(in Chinese).
丁文江,付彭怀,彭立明,等.航天器环境工程, 2011, 28(2), 103.
2 Zhao D, Dong G, Zhao B. Nonferrous Merals Engineering, 2015, 5(2), 23(in Chinese).
赵怿,董刚,赵博.有色金属工程, 2015, 5(2), 23.
3 Li W X. Magnesium and magnesium alloy, Central South University Press, China, 2005(in Chinese).
黎文献.镁及镁合金,中南大学出版社, 2005.
4 Ostapovets Andriy, Serra Anna. Journal of Materials Science, 2017, 52(1),533.
5 Chen Z H. Magnesium alloys, Chemical Industry Press, China, 2004,pp.19(in Chinese).
陈振华.镁合金,化学工业出版社, 2004,pp.19.
6 Yang L X, Xiao L, Zhou H T, et al. Aerospace Shanghai, 2019, 36(2), 38(in Chinese).
杨力祥,肖旅,周海涛,等.上海航天, 2019, 36(2), 38.
7 Zhang J H, Liu S J, Wu R Z, et al. Journal of Magnesium and Alloys, 2018, 6(3), 277.
8 Rokhlin L L. Magnesium alloys containing rare earth metals, Taylor & Francis Company Limited, UK, 2003,pp.37.
9 Saccone A, Delfino S, Borzone G, et al. Journal of the Less Common Metals, 1989, 154(1), 47.
10 Liu C M, Zhu X R, Zhou H T. The phase diagrams of magnesium alloys, Central South University Press, 2006,pp.51(in Chinese).
刘楚明,朱秀荣,周海涛.镁合金相图集,中南大学出版社, 2006,pp.51.
11 Masahiko Nishijima, Kenji Hiraga, Michiaki Yamasaki, et al. Materials Transactions, 2009, 50(7), 1747.
12 Li B B, Dong J, Zhang Z Y, et al. Materials & Design, 2017, 116, 419.
13 Zhang Z Y. Study on the microstructure, mechanical properties and precipitated phase transformations of Mg(-Gd)-Sm-Zr alloys. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2009(in Chinese).
章桢彦.Mg(-Gd)-Sm-Zr合金的微观组织、力学性能和析出相变研究.博士学位论文, 上海交通大学, 2009.
14 Liu N Y. Study on precipitates and phase transformation mechanism of Mg-Sm-Gd system alloys. Master's Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese).
刘宁远. Mg-Sm-Gd系合金时效析出相及相变机理研究.硕士学位论文,上海交通大学, 2015.
15 Xie H B, Liu B S, Bai J Y, et al. Journal of Alloys and Compounds, 2020, 814, 152320.
16 Zhu B B, Sun Y S, Jia D, et al. Journal of Southeast University (Natural Science Edition), 2009, 39(3), 610(in Chinese).
朱蓓蓓,孙扬善,贾迪,等.东南大学学报(自然科学版), 2009, 39(3), 610.
17 Guo C P, Du Z M, Li C R. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34(1), 90.
18 Zhang Z Y, Peng L M, Zeng X Q, et al. Materials Characterization, 2009, 60(6),555.
19 Zhao Y, Wang Q D, Gu J H, et al. Materials Science Forum, 2007, 62(1095), 159.
20 Zhu L M, Li Q A, Zhou Y, et al. Rare Metal Materials and Engineering, 2019, 48(1), 171(in Chinese).
朱利敏,李全安,周耀,等.稀有金属材料与工程, 2019, 48(1), 171.
21 Fu S L. Study on the microstructure and mechanical properties of Mg-Gd(-Y-Sm-Zr) heat resistant magnesium alloys. Ph.D. Thesis, Xi'an University of Technology, China, 2016(in Chinese).
付三玲.Mg-Gd(-Y-Sm-Zr)耐热镁合金组织和性能研究.博士学位论文,西安理工大学, 2016.
22 Gao X, He S M, Zeng X Q, et al. Materials Science and Engineering A, 2006, 431(1), 322.
23 Liu N Y, Zhang Z Y, Peng L M, et al. Materials Science and Enginee-ring A, 2015, 627, 223.
24 Fu S L, Li Q A, Jing X T. Transactions of Materials and Heat Treatment, 2016, 37(8), 41(in Chinese).
付三玲,李全安,井晓天.材料热处理学报, 2016, 37(8), 41.
25 Chen Z, Li Q A, Liu W J, et al. Heat Treatment of Metals, 2013, 38(9), 71(in Chinese).
陈志,李全安,刘文建,等.金属热处理, 2013, 38(9), 71.
26 Zhu Y, Li Q A, Fu S L, et al. Foundry, 2017, 66(2), 178(in Chinese).
周耀,李全安,付三玲,等.铸造, 2017, 66(2), 178.
27 Yuan M, Zheng Z Q. Metallography, Microstructure, and Analysis, 2014, 3(2), 131.
28 Chen Z. Effect of Y on microstructures and properties of Mg-Gd-Y-Sm-Zr alloys. Master's Thesis, Henan Univeristy of Science and Technology, China, 2014(in Chinese).
陈志.Y含量对Mg-Gd-Y-Sm-Zr合金组织和性能的影响.硕士学位论文,河南科技大学, 2014.
29 Yuan M. Study on the microstructure and mechanical properties of Mg-Sm-Gd-Zn-Zr alloy. Ph.D. Thesis, Central South University, China, 2014(in Chinese).
袁明.Mg-Sm-Gd-Zn-Zr系镁合金的组织与性能研究.博士学位论文,中南大学, 2014.
30 Li D Q, Wang Q D, Ding W J. Journal of Materials Science, 2009, 44(12), 3049.
31 Li D Q. Study on the microstructure and mechanical properties of Mg-Y-Sm-Zr alloys. Ph.D. Thesis,Shanghai Jiao Tong University, China, 2008(in Chinese).
李大全.Mg-Y-Sm-Zr系镁合金组织性能研究.博士学位论文,上海交通大学, 2008.
32 Li D Q, Wang Q D, Ding W J. Materials Science and Engineering A, 2006, 428(1-2), 295.
33 Zhang Q, Li Q A, Jing X T, et al. Journal of Rare Earths, 2010, 28(1), 375.
34 Li Z T, Li Q A, Chen X Y. Transactions of Materials and Heat Treatment, 2019, 40(12), 25(in Chinese).
李志涛,李全安,陈晓亚.材料热处理学报, 2019, 40(12), 25.
35 Kang H J. Effect of Gd on microstructures and properties of Mg-Gd-Y-Sm-Zr alloys. Master's Thesis, Henan Univeristy of Science and Technology, China, 2013(in Chinese).
亢海娟.Gd含量对Mg-Gd-Y-Sm-Zr合金组织和性能的影响.硕士学位论文,河南科技大学, 2013.
36 Zhang H. Effect of Zn content on microstructure and properties of Mg-Y-Sm-Zr alloy. Master's Thesis, North University of China, China, 2019(in Chinese).
张航.Zn含量对Mg-Y-Sm-Zr合金组织和性能的影响.硕士学位论文,中北大学, 2019.
37 Lyu S Y, Xiao W L, Li G D, et al. Materials Science and Engineering A, 2019, 746, 179.
38 Lyu S Y, Xiao W L, Li G D, et al. Journal of Alloys and Compounds, 2020, 821,153477.
39 Zhang Q. Microstructure and mechanical properties of heat resistant magnesium alloys with yttrium. Ph.D. Thesis, Xi'an University of Technology, China, 2012(in Chinese).
张清.含钇耐热镁合金的组织性能研究.博士学位论文,西安理工大学, 2012.
40 Qi Y, Li Q A, Chen X Y, et al. Transactions of Materials and Heat Treatment, 2020, 41(3), 34(in Chinese).
戚尧,李全安,陈晓亚,等.材料热处理学报, 2020, 41(3), 34.
41 Zhao S C. Study on the microstructural evolution and mechanical properties of Mg-Nd-Sm-Zn-Zr alloys. Ph.D. Thesis, Harbin University of Science and Technology, China, 2017(in Chinese).
赵思聪. Mg-Nd-Sm-Zn-Zr合金微观组织演变及力学性能研究.博士学位论文,哈尔滨理工大学, 2017.
42 Che C J, Cheng L R, Tong L B, et al. Journal of Alloys and Compounds, 2017, 706, 526.
43 Cao G J, Zhu N, Zhao S C, et al. Materials Letters, 2019, 246, 117.
44 Guan K, Li B S, Yang Q, et al. Journal of Alloys and Compounds, 2018, 735, 1737.
45 Zhang T T, Cui H W, Cui X L, et al. Materials Research Express, 2019, 6(7), 76550.
46 Zhang T T, Cui H W, Cui X L, et al. Journal of Alloys and Compounds, 2019, 784, 1130.
47 Zheng J, Wang Q D, Jin Z L, et al. Materials Science and Engineering A, 2010, 527(7-8), 1677.
48 Guan K, Meng F Z, Qin P F, et al. Journal of Materials Science and Technology, 2019, 35(7), 1368.
49 Huang X F, Zhang Y, Guo F, et al. China Foundry,2018,15(2),103.
50 Che C J, Cai Z Y, Cheng L R, et al. Metals, 2017, 7, 281.
51 Chen S Q, Song X H, Chen L. Chinese Rare Earths, 2017, 38(1), 108(in Chinese).
陈胜迁,宋新华,陈立.稀土, 2017, 38(1), 108.
52 Zhang D D, Yang Q, Li B S, et al. Journal of Alloys and Compounds, 2019, 805, 811.
53 Sun R X, Liu Y F, Wang R H, et al. Hot Working Technology, 2018, 47(20), 222(in Chinese).
孙瑞霞,刘义付,王瑞红,等.热加工工艺, 2018, 47(20), 222.
54 Guo R H, Li Z L, Li H Q, et al. Journal of Materials Engineering, 2018, 46(11), 125(in Chinese).
郭瑞华,李振亮,李慧琴,等.材料工程, 2018, 46(11), 125.
55 Zhang Y, Huang X F, Ma Z D, et al. The Chinese Journal of Nonferrous Metals, 2017, 27(10), 1961(in Chinese).
张玉,黄晓锋,马振铎,等.中国有色金属学报, 2017, 27(10), 1961.
56 Zhang S Q, Hu L F, Jiang L Y, et al. Shanghai Metals, 2018, 40(5), 71(in Chinese).
张书强,胡玲飞,姜廉瑜,等.上海金属, 2018, 40(5), 71.
57 Wang C L, Dai J C, Liu W C, et al. Journal of Alloys and Compounds, 2015, 620, 172.
58 Zheng Y, Cai Z Y,Cheng L R. Materials Reports B:Research Papers, 2019, 33(8), 1354(in Chinese).
郑嫄,蔡中义,程丽任,等.材料导报:研究篇, 2019, 33(8), 1354.
59 Huang Z H, Qi W J, Xu J, et al. Chinese Journal of Rare Metals, 2017, 41(11), 1173(in Chinese).
黄正华,戚文军,徐静,等.稀有金属, 2017, 41(11), 1173.
60 Hu Z, Hua Q, Yan H, et al. Rare Metal Materials and Engineering, 2016, 45(9), 2275.
61 Wang J L, Wang L D, Wu Y M, et al. Materials Science and Engineering A, 2011, 528(12), 4115.
62 Li K J, Li Q A, Jing X T, et al. Scripta Materialia, 2009, 60(12), 1101.
63 Sun M, Hu X Y, Peng L M, et al. Materials Science and Engineering A, 2015, 620, 89.
64 Hu X Y, Fu P H, David S J, et al. Journal of Alloys and Compounds, 2016, 663, 387.
65 Son H T, Lee J S, Kim D G, et al. Journal of Alloys and Compounds, 2009, 473(1-2), 446.
66 Luo X P, Fang D Q, Li Q S, et al. Journal of Rare Earths, 2016, 34(11), 1134.
67 Luo X P, Fang D Q, Chai Y S, et al. Microscopy Research and Technique, 2016, 79(8), 707.
68 Chai Y S, Gao Z G, Cai K L, et al. Rare Metal Materials and Enginee-ring, 2016, 45(2), 287.
[1] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[2] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[3] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[4] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[5] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[6] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[7] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[8] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[9] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[10] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[11] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[12] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[13] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[14] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[15] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed