Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20080279-10    https://doi.org/10.11896/cldb.20080279
  表面工程材料与技术 |
磁流变抛光关键技术及工艺研究进展
肖强1, 王嘉琪1, 靳龙平2
1 西安工业大学机电工程学院,西安 710021
2 西北工业集团有限公司,西安 710043
Research Progress of Key Technology and Process of Magnetorheological Finishing
XIAO Qiang1, WANG Jiaqi1, JIN Longping2
1 School of Mechatronic Engineering, Xi'an Technological University, Xi'an 710021, China
2 Northwest Industry Group Co., Ltd., Xi'an 710043, China
下载:  全 文 ( PDF ) ( 5518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着超光滑平面器件的需求越来越大,要求器件表面粗糙度需达到纳米级,面形精度达到微米级,且无表面和亚表面损伤。传统超精密抛光技术效率低、成本高、不易控制,易产生表面、亚表面损伤,难以满足生产的要求。磁流变抛光技术(MRF)是利用磁流变抛光液在磁场中的流变性对器件表面进行抛光的一种新兴的超精密加工技术,其抛光过程可被有效控制,且能够实现精准抛光,可达到超精密的质量要求。
本文对磁流变抛光技术中磁流变液和磁极等关键参数进行了分析和总结,详述了磁流变液的组成部分、常见材料以及三大指标(沉降稳定性、磁力学特性和剪切屈服应力)。研究结果表明,磁流变液的沉降率和稳定性都与磁流变液中的成分密切相关,磁敏微粒不同,磁流变液的沉降率也各有不同,通过使用不同的添加剂改变磁敏微粒的表面活性,从而改变磁流变液的沉降性能;磁流变液的组成部分中磁敏微粒作为唯一有效的导磁材料,影响着磁流变液的磁力学特性;磁场作用下,磁敏微粒逐渐形成链状结构,处于凝聚状态,当磁敏微粒的磁化强度不断增大时,剪切应力也呈现出明显增大的趋势。同时本文综述了磁场发生装置中磁极的不同形态对磁场的影响以及磁极的不同布列方式对磁场和抛光效果的影响,阐述了不同的磁极排列方式对磁场大小和抛光垫均匀性的影响规律。相比其他形状的磁极,圆柱形和方形柱状磁体是最理想的两种永磁体形状。
本文总结了目前磁流变抛光技术的工艺研究的新方向,包括集群磁流变抛光技术、可以加工曲面的组合磁流变抛光技术、全球面包络磁流变抛光技术以及超声磁流变复合加工技术,介绍了这几种加工方法的工作原理以及能够达到的工艺效果,最后总结了现阶段磁流变抛光技术研究中存在的问题,并对其今后的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖强
王嘉琪
靳龙平
关键词:  磁流变抛光  磁流变液  磁极  集群磁流变抛光技术  超声磁流变复合加工技术    
Abstract: With the increasing demand for ultra smooth planar components, the surface roughness should reach nanometer level, the surface shape accuracy should reach micron level, and there should be no surface and subsurface damage. The traditional ultra precision polishing techno-logy is low efficiency, high cost, difficult to control, easy to produce surface subsurface damage, which is difficult to meet the production requirements. Magnetorheological finishing (MRF) is a kind of ultra precision machining technology which uses the rheological property of MRF slurry in magnetic field. It is a new precision manufacturing method. The polishing process can be effectively controlled, and can achieve precision polishing, which can achieve ultra precision quality requirements.
This paper analyzes and summarizes the key contents of magnetorheological fluid and magnetic pole in magnetorheological finishing. The components and common materials of MRF are described in detail, as well as three major indexes: settlement stability, magnetomechanical properties and shear yield stress. The results show that the sedimentation rate and stability of MRF are related to the composition of MRF. The sedimentation rate of MRF is different with different magnetic sensitive particles. Different additives can be used to change the sedimentation performance by changing the surface activity of magnetic sensitive particles. The only component of magnetorheological fluid is magnetic sensitive particle under the action of magnetic field, the magnetic sensitive particles gradually form a chain structure and are in the state of condensation. When the magnetization of the magnetic sensitive particles increases, the shear stress also changes, showing an obvious increase trend. At the same time, the influence of different configuration of magnetic pole on magnetic field and the influence of different arrangement of magnetic pole on magnetic field and polishing effect are summarized. The effects of different arrangement of magnetic poles on the size of magnetic field and the uniformity of polishing pad are described. Cylindrical and square cylindrical magnets are the most ideal permanent magnet shapes compared with other magnetic poles.
In this paper, the new research directions of MRF technology are summarized, including cluster MRF technology, combined MRF technology which can process curved surface, global MRF polishing technology and ultrasonic MRF composite processing technology. The working principle and process effect of these methods are introduced. Finally, the current stage of MRF is analyzed, the problems existing in the research of polishing technology are summarized, and the future development direction is prospected.
Key words:  magnetorheological finishing    magnetorheological fluid    magnetic pole    cluster magnetorheological polishing technology    ultrasonic magnetorheological composite processing technology
发布日期:  2022-04-07
ZTFLH:  TH11  
  TH16  
基金资助: 西安市科技计划-科技创新人才服务企业项目(2020KJRC0031);西安市未央区科技计划—产学研协同创新计划项目(201912);陕西省特种加工重点实验室开放基金项目资助(SXTZKFJJ201902);陕西省科技厅重点研发计划项目(2022GY-227)
通讯作者:  175230206@qq.com   
作者简介:  肖强,教授,博士,毕业于西安理工大学,获得工学博士学位,长期从事难加工材料的精密加工、特种加工。
引用本文:    
肖强, 王嘉琪, 靳龙平. 磁流变抛光关键技术及工艺研究进展[J]. 材料导报, 2022, 36(7): 20080279-10.
XIAO Qiang, WANG Jiaqi, JIN Longping. Research Progress of Key Technology and Process of Magnetorheological Finishing. Materials Reports, 2022, 36(7): 20080279-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080279  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20080279
1 Rabinow J. Aiee Transactions, 1948,67,1308.
2 Liu H,Cheng J,Wang T,et al. Nanotechnology and Precision Enginee-ring, 2019,2(3),125.
3 Paswan S K,Singh A K. Wear, 2019,426-427,68.
4 Nie M,Cao J,Li J,et al. International Journal of Mechanical Sciences, 2019,161,105018.
5 Peng X,Yang C,Hu H,et al. The International Journal of Advanced Manufacturing Technology, 2017,88(9-12),1.
6 Zhao Z Y. Basic research on super smooth magnetorheological polishing process of fused quartz element.Master's Thesis,China Academy of Engineering Physics, China,2017(in Chinese).
赵子渊. 熔石英元件超光滑磁流变抛光工艺基础研究.硕士学位论文,中国工程物理研究院,2017.
7 Alam Z,Jha S. Wear, 2017,374-375,54.
8 Chen M,Liu H,Cheng J,et al. Applied Optics, 2017,56(19),15.
9 Kafka K R P,Hoffman B,Papernov S,et al. Laser-Induced Damage in Optical Materials,2017,10447, 1044709.
10 Grove V,Singh A K. Proceedings of the Institution of Mechanical Engineers, 2019,233(1),16.
11 Yun F Z, Feng F, Wei F, et al. In:International Symposium on Advanced Optical Manufacturing and Testing Technologies.Xi'an, 2019, pp. 25.
12 Jing H, Xian H C, Jie L, et al. In:International Symposium on Advanced Optical Manufacturing and Testing Technologies.Xi'an, 2019, pp. 36.
13 Chi L, Feng S, Ye T, et al. In:International Symposium on Advanced Optical Manufacturing and Testing Technologies.Xi'an, 2019, pp. 56.
14 Kang G.Machine Tools & Hydraulics, 2008,36(3), 173.
15 Sato T, Wu Y B, Lin W M, et al. Advanced Materials Research, 2009, 76-78(7),288.
16 Liu Q. Experimental study of the lapping based on cluster magneto-rheological effect for single crystal sic wafer. Master's Thesis,Guangdong University of Technology,China,2014(in Chinese).
刘其.单晶SiC集群磁流变研磨加工工艺实验研究.硕士学位论文,广东工业大学, 2014.
17 Seok J, Kim Y J, Jang K I, et al. International Journal of Machine Tools & Manufacture, 2007, 47(14), 2077.
18 Wang J, Xiao Q. Surface Technology, 2019,48 (10),317.
19 Dai Y F,Shi F,Peng X Q,et al. Science in China Series E:Technological Sciences, 2009,52(10),2092.
20 Jia B L,Xiao Y L,Yun F Z,et al. Applied Surface Science, 2020, 3 (2), 57.
21 Shi W L, Hong X W, Qing H Z, et al. OPTIK, 2020, 49(3),32.
22 Wang D K. Study on the key technologies of belt magnetorheological finishing.Ph.D.Thesis,University of Chinese Academy of Sciences,China,2018(in Chinese).
王德康.带式磁流变抛光关键技术研究.博士学位论文,中国科学院大学,2018.
23 Tang X H, Huang W, He J G, et al. Manufacturing Technology & Machine Tool, 2018 (12), 60(in Chinese).
唐小会,黄文,何建国,等. 制造技术与机床, 2018(12),60.
24 Sha S, Hu J, Zhang H. Mechanical Engineer, 2018,7, 5.
25 Guo M, Luo H, Wang C, et al. Surface Technology, 2018, 47(7), 28.
26 Wang L F,Lu H. Journal of Magnetic Materials and Devices, 2018,49 (5), 28(in Chinese).
王利锋,路和. 磁性材料及器件, 2018,49(5),28.
27 Zhu W, Tong Y, Yu X,et al. Astronautical Systems Engineering Techno-logy, 2019,3(1), 56.
28 Yang J, Yan H, Dai J, et al. Chemical Industry and Engineering Progress, 2017,36 (1), 247.
29 Guo Q Y, Wang J, Ouyang Q. Materials for Mechanical Engineering, 2018,42 (10), 8(in Chinese).
郭秋月,王炅,欧阳青. 机械工程材料, 2018,42(10),8.
30 Zhang H S, Hu Z D, Yan H, et al. Materials Reports B:Research Papers, 2019,33 (6), 1052(in Chinese).
张寒松,胡志德,晏华,等. 材料导报:研究篇, 2019,33(6),1052.
31 Sun C L, Xu Z D, Dai J. Journal of Southeast University (Natural Science Edition), 2019,49 (2), 328(in Chinese).
孙春丽,徐赵东,戴军. 东南大学学报(自然科学版),2019,49(2),328.
32 Choi J S,Park B J,Cho M S,et al.Journal of Magnetism&Magnetic Materials, 2006,304(1),e374.
33 Pu H T, Jiang F J. Chemical Industry and Engineering Progress, 2005 (2), 132(in Chinese).
浦鸿汀,蒋峰景. 化工进展, 2005(2),132.
34 Ashtiani M,Hashemabadi S H,Ghaffar A.Journal of Magnetism & Magnetic Materials, 2014,374,716.
35 Kordonski W I, Gorodkin S R, Novikova Z A, et al. In:Proceedings of the 6th International Conference on Er Fluids:Mr Suspensions and Their Applications.Singapore, 1998, pp.535.
36 Dans K, Kankannla S V, Triantfyllidis N. Journal of the Mechanics & Physics of Solids, 2012,60(10),120.
37 Ginder J M,Elie L D,Davis L C. patent, US EP3024235, 1996.
38 Xie J X. Journal of Materials Science & Engineering,2018,36(1),117.
39 Dai B, Jiang P, Zhou G R, et al. Powder Metallurgy Technology, 2018,36(5), 355(in Chinese).
戴斌,姜平,周根荣,等. 粉末冶金技术, 2018,36(5),355.
40 Tang A J. Development of a new plate polishing technique with an instantaneous tiny-grinding wheel cluster based on magnetorheological effect.Master's Thesis,Guangdong University of Technology, China,2008(in Chinese).
汤爱军. 集群磁流变效应微磨头平面研抛加工技术研究.硕士学位论文,广东工业大学, 2008.
41 Chen G. Study on the cluster magnetorheological polishing experiment of single crystal sapphire substrate.Master's Thesis,Xi'an Technological University, China,2018(in Chinese).
陈刚. 单晶蓝宝石基片集群磁流变抛光实验研究.硕士学位论文, 西安工业大学, 2018.
42 Guo M, Yan Q, Pan J, et al. Diamond & Abrasive Engineering, 2018,38 (1), 89.
43 Yu P. Research on magnetorheological finishing of strontium titanate ceramic substrates with dynamic magnetic fields effect.Master's Thesis, Guangdong University of Technology, China,2017(in Chinese).
于鹏,钛酸锶电瓷基片动态磁场磁流变抛光研究.硕士学位论文,广东工业大学,2017.
44 Zhou Q Q,Peng K,Chen Y F, et al. Surface Technology, 2020,49(6),337(in Chinese).
周琴琴,彭可,陈永福,等. 表面技术,2020,49(6),337.
45 Yan Q S,Tang A J,Lu J B, et al. Diamond & Abrasives Engineering, 2008,5,66.
46 Liu Q.Experimental study of the lapping based on cluster magneto-rheological effect for single crystal SiC wafe.Master's Thesis,Guangdong University of Technology, China,2014(in Chinese).
刘其.单晶SiC集群磁流变研磨加工工艺实验研究.硕士学位论文, 广东工业大学,2014.
47 Pan W,Lu J,Yan Q. Lubrication Engineering, 2018,43(10),45.
48 Xiao Q,Chen G. Acta Photonica Sinica, 2018,47(1),7(in Chinese).
肖强,陈刚. 光子学报, 2018,47(1),7.
49 Li Z.Research on the key technology of combined magnetorheological finishing.Master's Thesis,Hunan University, China,2016(in Chinese).
李智.组合磁流变抛光的关键技术研究.硕士学位论文,湖南大学,2016.
50 Xiao X L, Yan Q S, Pan J S, et al. Surface Technology, 2019,48(2),268(in Chinese).
肖晓兰,阎秋生,潘继生,等. 表面技术, 2019,48(2),268.
51 Hu J F.Research on polishing zirconia ceramic with magnetorheological finishing-ultrasonic composite technology. Master's Thesis, Changchun University of Technology,China,2016(in Chinese).
胡锦飞.磁流变-超声波综合技术抛光氧化锆陶瓷的研究.硕士学位论文,长春工业大学,2016.
52 Zhang F H,Wang H J,Hang Z,et al. SPIE, 2007,6722,67221p1.
53 Esmaeilzare A, Rahimi A, Rezaei S M. Applied Surface Science, 2014,313(7),67.
54 Maas P, Mizumoto Y, Kakinuma Y, et al. International Journal of Precision Engineering & Manufacturing, 2017, 18(1),109.
55 Luo J, Dornfeld D A. Transactions on Semiconductor Manufacturing, 2003, 16(3), 469.
[1] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[2] 王弘义, 罗一平, 纪东升, 陈亚蒙. 基于赫兹接触理论的磁流变液电阻计算方法[J]. 材料导报, 2020, 34(Z1): 486-489.
[3] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[4] 张进秋, 赵明媚, 姚军, 李欣, 彭志召. 磁流变液摩擦磨损特性研究进展概述[J]. 材料导报, 2018, 32(17): 2969-2975.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed