Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20120180-6    https://doi.org/10.11896/cldb.20120180
  金属与金属基复合材料 |
40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能
徐楷昕1, 雷振1, 黄瑞生1, 尹立孟2,3, 方乃文1,4, 邹吉鹏1, 曹浩1
1 哈尔滨焊接研究院有限公司,哈尔滨 150028
2 广东省现代焊接技术重点实验室,广东省科学院中乌焊接研究所,广州 510651
3 重庆科技学院冶金与材料工程学院,重庆 401331
4 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150006
Microstructure and Properties of 40 mm-thick TC4 Titanium Alloy Welded Joint by Narrow-gap Laser Welding with Filler Wire
XU Kaixin1, LEI Zhen1, HUANG Ruisheng1, YIN Limeng2,3, FANG Naiwen1,4, ZOU Jipeng1, CAO Hao1
1 Harbin Welding Institute Limited Company, Harbin 150028, China
2 China-Ukraine E.O. Paton Institute of Welding, Guangdong Modern Welding Key Laboratory, Guangzhou 510651, China
3 School of Metallurgy and Materials Engineering, Chongqing University Science & Technology, Chongqing 401331, China
4 School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150006, China
下载:  全 文 ( PDF ) ( 11972KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用窄间隙激光填丝焊接工艺完成了40 mm厚TC4钛合金的焊接,通过OM、SEM、EDS、XRD、EBSD等测试方法对接头各区域进行微观组织和结构分析,并测试了其力学性能。结果表明,焊缝截面整体成形良好,无明显未熔合与气孔缺陷。接头三个区域的显微组织相同:焊缝柱状晶内部分布着密集排列的针状α′马氏体和弥散分布的颗粒状的αg相,同一β晶粒内部α′择优取向,大角度晶界比例较高。焊缝中心各区都是典型的α′+β双相结构。热影响区为过渡态组织,越靠近焊缝侧,其组织形态与焊缝处越相似,焊接过程中Al元素向热影响区发生了扩散。焊接接头焊缝区整体硬度高于母材,盖面区最高,平均值约为380HV。接头的抗拉强度最大值为954 MPa,拉伸试样均断在母材,断口为韧性断裂,接头各区室温冲击性能均低于母材。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐楷昕
雷振
黄瑞生
尹立孟
方乃文
邹吉鹏
曹浩
关键词:  激光技术  激光填丝焊  TC4钛合金  显微组织  力学性能    
Abstract: 40 mm-thick TC4 titanium alloy was welded by narrow-gap laser welding with filler wire. The microstructure and structure of each area of the welded joint were analyzed by OM, SEM, EDS, XRD, EBSD and other testing methods, and the mechanical properties were tested.The results show that the weld cross section is well formed without obvious lack of fusion and pore.The microstructure of the three areas of the joint is essentially the same: there are densely arranged needle α′ martensite and dispersed granular αg phase in the columnar crystal of the weld, in the same β grain, the α′ orientation is preferred and the ratio of grain boundary with large angle is higher and all the areas of the weld center have α′+β phase structure.The heat-affected zone presents as transition-state structure. The closer it is to the weld, the more similar its microstructure is to that of the weld. In the welding process, Al element diffuses into the heat-affected zone.The overall hardness of the weld area of the welded joint is higher than that of the base metal, and the cover layer is the highest, with an average value of about 380HV.The maximum tensile strength of the joint reaches 954 MPa. The tensile samples are all broken in the base metal with ductile fracture. The impact performance of the joints at room temperature is all lower than that of the base metal.
Key words:  laser technique    laser wire filling welding    TC4 titanium alloy    microstructure    mechanical properties
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TG456.7  
基金资助: 国家科技重大专项(2018ZX04044001),国家重点研发计划资助项目(2021YFB3401100)
通讯作者:  huangrs8@163.com20120180-1   
作者简介:  徐楷昕,2018年6月毕业于西南交通大学,获得工学学士学位。现为机械科学研究院哈尔滨焊接研究所硕士研究生,主要从事激光焊接技术的研究。黄瑞生,正高级工程师,2010年毕业于大连理工大学,获材料加工工程博士学位。现任职于机械科学研究总院哈尔滨焊接研究院有限公司研发中心副主任,主要从事激光加工技术研究及设备开发,发表相关学术论文20余篇。
引用本文:    
徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
XU Kaixin, LEI Zhen, HUANG Ruisheng, YIN Limeng, FANG Naiwen, ZOU Jipeng, CAO Hao. Microstructure and Properties of 40 mm-thick TC4 Titanium Alloy Welded Joint by Narrow-gap Laser Welding with Filler Wire. Materials Reports, 2022, 36(2): 20120180-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120180  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20120180
1 Chang H, Wang X D, Zhou L. Materials China, 2014(9),603(in Chinese).
常辉, 王向东, 周廉.中国材料进展, 2014(9), 603.
2 Zhang T G, Zhang Q, Zhuang H F, et al. Acta Optica Sinica, 2020, 40(11),1114001 (in Chinese).
张天刚, 张倩, 庄怀风, 等. 光学学报, 2020, 40(11),1114001.
3 Liao C H, Zhou J, Shen H. Chinese Journal of Lasers, 2020, 47(1), 0102003(in Chinese).
廖聪豪, 周静, 沈洪. 中国激光, 2020, 47(1), 0102003.
4 Yang T, Xu D Z, Chen W, et al. Materials Letters, 2019, 250(1),116.
5 Zhang G W, Xiao R S. Chinese Journal of Lasers, 2014, 41(8),0803007 (in Chinese).
张国伟, 肖荣诗. 中国激光, 2014, 41(8), 0803007.
6 Zhao Y, Wang Q Z, Huang J, et al. Chinese Journal of Lasers, 2015, 42(2),0203007 (in Chinese).
赵勇, 王清曌, 黄坚, 等. 中国激光, 2015, 42(2),0203007.
7 Wang H P, Yang X Y, Chen H, et al. Transactions of the China Welding Institution, 2019, 40(11),87 (in Chinese).
汪汉萍, 杨晓益, 陈辉, 等. 焊接学报, 2019, 40(11),87.
8 Cui B, Zhang H, Zhao C Y, et al. Materials Reports, 2018, 32(S2),333 (in Chinese).
崔冰, 张华, 赵常宇, 等. 材料导报, 2018, 32(S2),333.
9 Liu J, Zhan X, Gao Z, et al. International Journal of Advanced Manufacturing Technology, 2020, 108(3),1.
10 Wang J C, Guo C W, Li J J, et al. Acta Metallurgica Sinica, 2018, 54(5),48 (in Chinese).
王锦程, 郭春文, 李俊杰, 等. 金属学报, 2018, 54(5),48.
11 Xu P Q, Li L J, Zhang C B. Materials Characterization, 2014, 87,179.
12 Fang N W, Guo E J, Huang R S, et al. Materials Research Express, 2021(8), 016511.
13 Xu D Z. Investigation of microstructure evolution and property strengthening mechanisms of narrow-gap welded great thick TC4 titanium alloy joints. Master's Thesis, Southwest Jiaotong University, China, 2019 (in Chinese).
徐德志. 大厚板TC4钛合金窄间隙焊接接头组织演变规律及性能强化机制研究.硕士学位论文, 西南交通大学, 2019.
14 Anil Kumar V, Gupta R K, Manwatkar S K, et al. Journal of Materials Engineering and Performance, 2016, 25(6),2147.
15 Yu H, Li F, Yang J, et al. Materials Science and Engineering, 2018, 712(17),20.
16 Leary R K, Merson E, Birmingham K, et al. Materials Science and Engineering A, 2010, 527(29-30),7694.
17 Chen Y, Feng J, Li L, et al. Materials Science and Engineering A, 2013, 582(10),284.
18 Kumar C, Das M, Paul C P, et al. Optics & Laser Technology, 2018, 105,306.
19 Xu J, Wang W Y, Xie J P, et al. Rare Metals and Cemented Carbides, 2014(2),41 (in Chinese).
徐坚, 王文焱, 谢敬佩, 等. 稀有金属与硬质合金, 2014(2),41.
20 Kang S P, Li Z, Jiang X, et al. MW Metal Forming, 2014(Z2),193 (in Chinese).
康少酺, 李壮, 姜行, 等. 金属加工(热加工), 2014(Z2),193.
21 Cheng D H, Huang J H, Zhang H, et al. Rare Metal Materials and Engineering, 2009, 38(2),259 (in Chinese).
程东海, 黄继华, 张华, 等. 稀有金属材料与工程, 2009, 38(2),259.
22 Hu W M, Li G L, Liu X L, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(S1),48 (in Chinese).
胡伟民, 李国林, 刘希林,等. 中国有色金属学报, 2010, 20(S1),48.
23 Abbasi K,Beidokhti B,Sajjadi S A. Materials Science and Engineering A, 2017, 702,272.
[1] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[2] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[3] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[4] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[5] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[6] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[7] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[8] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[9] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[10] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[11] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[12] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[13] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[14] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[15] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed