Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 20120194-6    https://doi.org/10.11896/cldb.20120194
  金属与金属基复合材料 |
工艺参数对经济型耐候钢显微组织及硬化机理的影响
彭天恩1, 连智伟1, 何博2, 胡学文1,2, 蒋波1, 刘雅政1
1 北京科技大学材料科学与工程学院,北京 100083
2 马鞍山钢铁股份有限公司技术中心,安徽 马鞍山 243041
Effect of Process Parameters on Microstructure and Hardening Mechanism of Economical Weathering Steel
PENG Tianen1, LIAN Zhiwei1, HE Bo2, HU Xuewen1,2, JIANG Bo1, LIU Yazheng1
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083,China
2 Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243041, Anhui, China
下载:  全 文 ( PDF ) ( 19503KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验利用热模拟试验分析了不同成分耐候钢的连续冷却转变规律,研究了不同卷取温度下钢的组织性能变化规律,分析了其硬化机理。结果表明:不同实验钢在冷却速度不大于10 ℃/s时发生铁素体和珠光体转变,冷却速度大于10 ℃/s时开始发生贝氏体转变,Ni或P的增加促进了贝氏体的转变;含0.14%Ni(质量分数,下同)的钢在冷却速度不大于10 ℃/s时的硬化机理主要为细晶强化和析出强化,低Ni钢和高P钢主要为细晶强化。当冷却速度为10 ℃/s、卷取温度为580~620 ℃时,三种实验钢即可获得最大的硬度值,Ni或P对卷取后最大硬度值的影响不大。由于卷取的作用,析出强化成为主要的硬化机理,低Ni钢相比于卷取前析出强化增加了13%,高P钢增加了7%,含0.14%Ni的钢增加了3%,卷取过程促进不同实验钢的析出强化,其中对低Ni钢和高P钢的促进程度较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭天恩
连智伟
何博
胡学文
蒋波
刘雅政
关键词:  耐候钢  控轧控冷  硬化机理    
Abstract: In this paper, the continuous cooling transformation of weathering steels with different compositions was analyzed by thermal simulation test. The microstructures and properties of the specimens at different coiling temperatures were investigated, and the hardening mechanism was analyzed. The results showed that the transformation of ferrite and pearlite occurred at lower than cooling rate of 10 ℃/s, and bainite transformation began when the cooling rate was higher than 10 ℃/s. The increase of Ni or P promoted the probability of bainite transformation. At low cooling rate, the hardening mechanisms for 0.14%Ni steel were mainly grain refinement and precipitation, while the mechanisms for low Ni steel and high P steel were mainly grain refinement. The maximum hardness could be obtained when the cooling rate was 10 ℃/s and the coiling temperature was between 580—620 ℃. Ni or P had little effect on the maximum hardness after coiling. After coiling process, precipitation strengthening became the main hardening mechanism. The precipitation strengthening of low Ni steel was increased by 13%, while the high P steel was increased by 7%, and that of the 0.14% Ni steel increased by 3%. The coiling process promoted precipitation strengthening of different experimental steels, especially for low Ni steel and high P steel.
Key words:  weathering steel    controlled rolling and controlled cooling    hardening mechanism
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TG142.1  
基金资助: 北京科技大学与马鞍山钢铁股份有限公司合作项目;北京机械工程学会2020-2022青年人才托举计划
通讯作者:  jiangbo@ustb.edu.cn20120194-1   
作者简介:  彭天恩,北京科技大学材料科学与工程专业硕士研究生。主要进行材料成形理论与组织性能控制研究。蒋波,北京科技大学副教授,硕士研究生导师,美国匹兹堡大学访问学者,入选北京科协2020—2022青年人才托举计划和2017年度青海省第二批“高端创新人才千人计划”拔尖人才项目。2006年9月至2016年1月,在北京科技大学获得冶金工程专业工学学士学位和材料科学与工程专业工学博士学位,毕业后留校任教。以第一作者在国内外学术期刊上发表论文20余篇,申请国家发明专利7项,其中授权5项。研究工作主要围绕国家重点发展的先进金属材料,开展关于先进加工工艺以及组织性能控制的基础理论和应用研究,主持包括国家自然科学基金青年项目、中国博士后科学基金面上项目、中央高校基本科研业务费以及博士后国际交流计划学术交流项目等。
引用本文:    
彭天恩, 连智伟, 何博, 胡学文, 蒋波, 刘雅政. 工艺参数对经济型耐候钢显微组织及硬化机理的影响[J]. 材料导报, 2022, 36(2): 20120194-6.
PENG Tianen, LIAN Zhiwei, HE Bo, HU Xuewen, JIANG Bo, LIU Yazheng. Effect of Process Parameters on Microstructure and Hardening Mechanism of Economical Weathering Steel. Materials Reports, 2022, 36(2): 20120194-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120194  或          http://www.mater-rep.com/CN/Y2022/V36/I2/20120194
1 Liu X C, Zhang Z Z, Wu N, et al. China Metallurgy, 2020, 30(8), 56(in Chinese).
刘晓翠, 张转转, 吴耐, 等. 中国冶金, 2020, 30(8), 56.
2 Liu X C, Zhang Z Z, Liu K, et al. Steel Rolling, 2019, 36(6), 17(in Chinese).
刘晓翠, 张转转, 刘锟, 等. 轧钢, 2019, 36(6), 17.
3 An H Y, Liu Z Y, Zheng W C, et al. Sichuan Metallurgy, 2016, 38(4), 37(in Chinese).
安海玉, 刘志勇, 郑文超, 等. 四川冶金, 2016, 38(4), 37.
4 Yao J T, Sun L, An H L, et al. Special Steel, 2019, 40(3), 59(in Chinese).
姚纪坛, 孙力, 安会龙, 等. 特殊钢, 2019, 40(3), 59.
5 Liu X C, Zhang Z Z, Li W Y, et al. Steel Rolling, 2019, 36(4), 31(in Chinese).
刘晓翠, 张转转, 李文远, 等. 轧钢, 2019, 36(4), 31.
6 Zhou C, Zhang C Y, Li Y X, et al. Transactions of Materials and Heat Treatment, 2020, 41(7), 126(in Chinese).
周聪, 张晨洋, 李运鑫, 等. 材料热处理学报, 2020, 41(7), 126.
7 Yu Q. Journal of Iron and Steel Research, 2007, 19(11), 1 (in Chinese).
于千. 钢铁研究学报, 2007, 19(11), 1.
8 Liu R, Chen X P, Wang X D, et al. Corrosion Science and Protection Technology, 2016, 28(2), 122 (in Chinese).
刘芮, 陈小平, 王向东, 等. 腐蚀科学与防护技术, 2016, 28(2), 122.
9 Nishimura T, Katayama H, Noda K, et al.Corrosion Science, 2000, 42(9), 1611.
10 Cheng X Q, Jin Z, Liu M, et al. Corrosion Science, 2017, 115, 135.
11 Chen A H, Yue C X, Wu S J, et al. Heat Treatment of Metals, 2015, 40(2), 35 (in Chinese).
陈爱华, 岳重祥, 吴圣杰, 等. 金属热处理, 2015, 40(2), 35.
12 Wang W L, Yan Y F. Material Research Innovations, 2015, 19(S5), 1102.
13 Hosseini F A R, Mousavi A S H, Abbasi S M. Materials Science and Engineering A, 2019, 746, 384.
14 Zhang X, Li D Q. Iron Steel Vanadium Titanium, 2011, 32(4), 16(in Chinese).
张熙, 李德强. 钢铁钒钛, 2011, 32(4), 16.
15 Garcia-Mateo C, Bhadeshia H. Materials Science and Engineering A, 2004, 378(1-2), 289.
16 Tian Y, Zhao Z X, Wu X L, et al. Hebei Metallurgy, 2007(5), 10 (in Chinese).
田允, 赵征志, 吴新朗, 等. 河北冶金, 2007(5), 10.
17 Yong Q L, Ma M T, Wu B R. Microalloyed steel-physical and mechanical metallurgy, Mechanical Industry Press, China, 1989, pp.22(in Chinese).
雍岐龙, 马鸣图, 吴宝榕. 微合金钢—物理和力学冶金, 机械工业出版社, 1989, pp.22.
18 Yong Q L. The second phase in steel materials, Metallurgical Industry Press, China, 2006, pp. 361(in Chinese).
雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006, pp.361.
19 Petch N J. Journal of the Iron and Steel Institute, 1953, 174(19), 25.
20 Wang Y P. Chemical and General Machinery, 1982(12), 59(in Chinese).
王印培. 化工与通用机械, 1982(12), 59.
[1] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[2] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[3] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[4] 方文, 王海宾, 张朝磊, 王宏斌, 马晓艺. 预应力钢绞线用大规格82B盘条冬季时效期的系统控制[J]. 材料导报, 2019, 33(14): 2408-2412.
[5] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed