Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1712-1716    https://doi.org/10.11896/cldb.17120239
  金属与金属基复合材料 |
表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理
巴奇楠1, 宋仁伯1, 冯一帆1, 李论2
1 北京科技大学材料科学与工程学院,北京 100083
2 鞍山钢铁集团有限公司东鞍山烧结厂,鞍山 114041
Impact Wear and Hardening Mechanism of Explosion Hardening of ZGMn13Cr2 Steel Surface
BA Qinan1, SONG Renbo1, FENG Yifan1, LI Lun2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 East Anshan Sintering Plant, Anshan Steel Group Corporation Limited, Anshan 114041
下载:  全 文 ( PDF ) ( 24018KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对ZGMn13Cr2钢表面进行一次爆炸处理,测量其冲击磨损性能,观察不同硬化层的显微组织,分析其硬化机理。实验结果表明:经爆炸处理后的ZGMn13Cr2钢硬度随硬化深度的增加而降低,耐磨性提高了1.32~1.41倍,磨损形貌以犁沟、剥落坑为主,还有少量破碎坑;通过对不同硬化深度的实验用钢表面进行显微表征,发现硬化层内产生了大量的形变孪晶,爆炸表面具有高密度位错的畴界,距爆炸表面10 mm处有泰勒晶格以及距爆炸表面20 mm处出现大量平行的滑移带和滑移带交割,未观察到马氏体组织,仍以基体奥氏体为主,这说明一次爆炸处理的ZGMn13Cr2钢的硬化机理为孪晶硬化和位错硬化的复合机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巴奇楠
宋仁伯
冯一帆
李论
关键词:  爆炸处理  ZGMn13Cr2钢  硬化机理  形变孪晶  位错  冲击磨损    
Abstract: The surface of ZGMn13Cr2 steel was subjected to an explosion treatment, its impact wear performance and microstructure with different har-dening depths were observed, and the hardening mechanism was analyzed. The results indicate that the hardness of ZGMn13Cr2 steel after explosion treatment decreased with the increase of hardening depth, and the wear resistance is improved by 1.32—1.41 times. Its worn surfaces consist of peeling pits, grooves and a small amount of broken pits. A large number of the deformation twins (hardened layer), domain boundary with high density dislocations (explosion surface), Taylor lattice (10 mm from explosion surface) and parallel slip bands and the intersections of slip bands (20 mm from explosion surface) were observed in the test steel surface with different hardening depths, but there was no martensite, the austenite matrix was mainly observed. Therefore, hardening mechanism of ZGMn13Cr2 steel is mainly dislocation hardening and twins hardening.
Key words:  explosion hardening    ZGMn13Cr2 steel    hardening mechanism    deformation twin    dislocation    impact wear
                    发布日期:  2019-05-16
ZTFLH:  TG145  
通讯作者:  songrb@mater.ustb.edu.cn   
作者简介:  巴奇楠,2019年1月毕业于北京科技大学,获得工程硕士学位。主要从事高锰钢耐磨件的表面爆炸处理的研究。宋仁伯,北京科技大学材料加工系教授,材料加工系主任。2002年6月,获得北京科技大学博士学位。2002.12—2004.11,日本东京大学研究员。
引用本文:    
巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
BA Qinan, SONG Renbo, FENG Yifan, LI Lun. Impact Wear and Hardening Mechanism of Explosion Hardening of ZGMn13Cr2 Steel Surface. Materials Reports, 2019, 33(10): 1712-1716.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120239  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1712
1 Chen B G,Liu P R. Metallurgical Equipment, 2013(81),131 (in Chinese).
陈宝功, 刘培荣. 冶金设备, 2013(81), 131.
2 Zhang F C. Journal of Yanshan University, 2010(3), 189 (in Chinese).
张福成. 燕山大学学报, 2010(3), 189.
3 Yang Z N, Zhang F C, Zhang M, et al. Journal of Mechanical Enginee-ring, 2011(16), 20 (in Chinese).
杨志南, 张福成, 张明,等.机械工程学报, 2011(16), 20.
4 Lv B. Study on long lifetime hadfield steel crossing. Ph.D. Thesis, Yanshan University, China, 2009 (in Chinese).
吕博. 长寿命高锰钢辙叉的研究. 博士学位论文, 燕山大学, 2009.
5 Zhang F C, Lv B, Wang T S, et al. Materials Science & Technology, 2010, 26(2), 223.
6 Drobnjak D, Parr J G. Metallurgical Transactions, 1970, 1(4), 759.
7 Wang Z C. Journal of Iron & Steel Research, 1994,6(1), 67(in Chinese).
王兆昌. 钢铁研究学报, 1994, 6(1), 67.
8 Raghavan K S, Sastri A S, Marcinkowski M J. Transactions of the Metallurgical Society of AIME, 1969, 245, 333.
9 Abler P H, Olson G B, Owen W S. Metallurgical and Materials Transactions A, 1986, 17(10), 1725.
10 Dastur Y N, Leslie W C. Metallurgical Transactions A, 1981, 12(5), 749.
11 Sant S B, Smith R W, Weatherly G C. Philosophical Magazine Letters, 1990, 61(5), 8.
12 Li M S, Zhao S D, Shi G S. Acta Metallurgica Sinica, 1990, 26(6), 90(in Chinese).
李明山, 赵士达, 史国顺. 金属学报, 1990,26(6), 90.
13 Zhang M, Lv B, Zhang F, et al. ISIJ International, 2012, 52(11), 2093.
14 Li X X, Zhao G, Zhang G J. Hot Working Technology, 2013(6), 94(in Chinese).
李兴霞, 赵干, 张观军. 热加工工艺, 2013(6), 94.
15 Xiao J G, Tong Z. Ordnance Material Science & Engineering, 2009, 32(5),45 (in Chinese).
肖建国, 佟铮. 兵器材料科学与工程, 2009,32(5),45.
16 Lu Z L, Zhou Y X, Rao Q C, et al.Journal of Materials Processing Technology, 2001, 116(2-3),176.
17 Yoo J D, Hwang S W, Park K T. Materials Science & Engineering A, 2009, 508(1-2), 234.
18 Toker S M, Canadinc D, Taube A, et al. Materials Science & Engineering A, 2014, 593(3),120.
19 Peng S G, Song R B, Tan Z D, et al. Journal of Mechanical Enginee-ring, 2016, 52(8),125 (in Chinese).
彭世广, 宋仁伯, 谭志东, 等. 机械工程学报, 2016, 52(8),125.
20 Hughes D A. Acta Materialia, 1993, 41, 1421.
21 Uejt R, Tsuchida N, Teradad, et al.Scripta Materialia, 2008, 59(9), 963.
22 Karaman I, Sehitoglu H, Chumlyakov Y I, et al. Scripta Materialia, 2001, 44(2), 337.
23 Allain S, Chateau J, Dahmoun D, et al. Materials Science and Enginee-ring A, 2004, 387-389, 272.
24 Bay B, Hansen N, Khulmann-Wilsdorf D. Materials Science and Engineering A, 1989, 113, 385.
[1] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[2] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[3] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[4] 周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
[5] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[6] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[7] 王俊, 司乃潮, 王正军, 刘光磊, 司松海. 锻造热处理工艺对Al-7Si-1.6Cu合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 70-74.
[8] 陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
[9] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed