Please wait a minute...
材料导报  2019, Vol. 33 Issue (3): 479-489    https://doi.org/10.11896/cldb.201903015
  金属与金属基复合材料 |
先进镍基单晶高温合金蠕变行为的研究进展
岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志
西北工业大学凝固技术国家重点实验室,西安 710072
Research Progress of Creep Behaviors in Advanced Ni-based Single CrystalSuperalloys
YUE Quanzhao, LIU Lin, YANG Wenchao, HUANG Taiwen, SUN Dejian, HUO Miao, ZHANG Jun, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 4373KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 先进镍基单晶高温合金具有优良的成分兼容性,在1 000 ℃以及更高温度下仍能保持较高的组织稳定性、抗蠕变性、抗疲劳性、抗氧化性和抗腐蚀性能,被广泛应用于现代航空发动机和地面燃气轮机的涡轮叶片等关键热端部件。在服役过程中,镍基单晶高温合金主要发生涡轮叶片旋转造成的蠕变及疲劳变形。另外,现代航空发动机对涡轮进口温度的要求不断提升,使得镍基单晶高温合金的承温承载能力面临着更大的挑战。
长期以来,材料科研工作者尝试了许多方法来提升镍基单晶高温合金的蠕变性能:在镍基单晶高温合金中添加了大量的难熔元素(W、Cr、Mo、Re等),降低了元素的扩散速率,从而提高了合金的固溶强化水平;添加了γ′相形成元素(Al、Ti、Ta),形成金属间化合物γ′沉淀相,利用γ′沉淀相与γ基体相之间的相干应变、有序化,以及弹性模量和堆垛层错能差异等沉淀强化机制,提高合金的强度;通过调整热处理制度,进一步优化沉淀相的尺寸、形态以及体积分数,最大化沉淀强化效果;通过调整Mo与Re的含量,提高γ′沉淀相与γ基体相的错配度,细化γ/γ′界面位错网间距,强化γ/γ′相界面强度,提高镍基单晶高温合金的蠕变抗力;同时加入适量的Pt族金属元素,抑制了TCP有害相的析出,进一步稳定了合金组织。
然而,镍基单晶高温合金中元素的合金化程度已很高,在CMSX-10中难熔元素的含量高达20.5%,这已经接近镍基体的溶解度极限;同时,也带来了其他一系列问题:组织不稳定性(包括凝固缺陷析出倾向的增加、TCP相的析出)以及合金密度和成本的增加。另外,对于第四代及其后续的镍基单晶高温合金的设计,除依赖提高难熔元素含量和加入铂族元素稳定组织外,并无其他公开、有效的措施。现行措施也与现代工业追求低密度、低成本、环境友好的理念背道而驰。因此,深入认识镍基高温合金成分-组织-结构-性能之间的内在联系十分重要,亟待突破现有的合金设计理论。
本文试图从最重要的长时力学性能之一的蠕变性能出发,分别对镍基单晶高温合金成分、组织结构、蠕变行为特点等方面进行了阐述,重点探讨了固溶元素、γ′体积、尺寸、形态、γ/γ′界面、堆垛层错能(SFE)、反相畴界能(APB)等因素对蠕变行为、蠕变机制的影响规律,分析了镍基单晶高温合金蠕变行为研究面临的问题,并展望其研究前景,以期能够深入理解单晶高温合金的强韧化机理,为新一代镍基单晶高温合金的设计提供一些思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳全召
刘林
杨文超
黄太文
孙德建
霍苗
张军
傅恒志
关键词:  先进镍基单晶高温合金  蠕变  位错网  强韧化机理    
Abstract: Advanced Ni-based single crystal superalloys have long been the candidate materials for applications in the critical components of modern aeroengines and in-land gas turbine engines due to their superior composition compatibility, microstructural stability, and creep, fatigue, oxidation, corrosion resistances at temperatures up to 1 000 ℃ and beyond. During services, Ni-based single crystal superalloys are mainly subjected to creep and fatigue deformation caused by the centrifugal forces generated from turbine blade rotation. In addition, the increasing need for the higher turbine entry temperature in modern aeroengines also poses a greater challenge to the temperature and load tolerance of advanced Ni-based single crystal superalloys.
In the past decades, considerable endeavors have been made aiming at promoting the creep resistance of Ni-based single crystal superalloys. The addition of refractory elements such as W, Cr, Mo, Re, etc. has led to lower diffusion rates and consequently elevated solid solution strengthening levels in superalloys. A significant number of γ′-forming elements added to Ni-based single crystal superalloys, e.g. Al, Ti and Ta, have been proved able to impart strengthening via the ordered compound, i.e., γ′-Ni3(Al, Ti, Ta) phase, which is known as the precipitation hardening. The coherency strains, existence of order in γ′ phase, and differences in elastic moduli and stacking fault energy (SFE) between γ′ phase and γ matrix, etc. contribute to the improvement of creep resistance of advanced Ni-based single crystal superalloys. By applying a series of adjusted heat treatments, including ramp solution heat treatment, fast solution heat treatment and melting solution heat treatment, etc., the sizes, morphologies and volume fractions of γ′ precipitates have been further optimized, which achieves full potential of the precipitation hardening. Moreover, following from the consideration that the creep resistance of a superalloy will be enhanced due to the increased γ/γ′ interface strength, moderate Mo and Re elements have been added, resulting in appropriately increased γ/γ′ lattice misfit, improved γ/γ′ interfacial dislocation network density and interfacial strength, all of which benefit the creep resistance. Researchers have also successfully reduced the susceptibility to precipitation of topologically close-packed (TCP) phases by adding Pt-group elements, and in consequence, have made further strides in stabilizing the superalloys’ microstructure.
However, Ni-based single crystal superalloys already have quite high alloying degree. The refractory elements content in CMSX-10 has approached 20.5 wt%, which has almost touched the ceiling solubility in Ni-matrix. Meanwhile, there have been observed a series of negative consequences of alloying, e.g. microstructural instability (the increasing precipitation tendency of TCP phases and solidification defects), and the rise in alloy density and cost. On the other hand, despite of relying on increasing the content of refractory elements and platinum group elements’ addition to stabilize microstructures, there lacks other known and effective ways available for designing next-generation Ni-based single crystal superalloys. And current methods seem more bent on running counter to the prevailing ideal of modern industry that advocates low density, low cost and enviro nment-friendliness. This sobering development situation has highlighted the importance of a deep understanding of the intrinsic relationship of composition-microstructure-performance, and the urgency of a breakthrough in the traditional alloy design theory.
From the perspective of one of the most important mechanical properties, i.e. creep resistance, this review provides elaborate descriptions about the composition, microstructure and creep behavior, etc., in advanced Ni-based single crystal superalloys. We also discussed carefully the action principles of solid solution elements, and sizes, morphologies and volume of γ′ precipitates, as well as γ/γ′ interface, stacking fault energy (SFE) and antiphase boundary (APB) energy, etc., on the creep behavior and mechanism. The current existing challenge and future research aspects on the study of creep in new-generation Ni-based single crystal superalloys were stated and prospected.
Key words:  advanced Ni-based single crystal superalloy    creep    dislocation network    strengthening and toughening mechanism
               出版日期:  2019-02-10      发布日期:  2019-02-13
ZTFLH:  TG115.5  
基金资助: 国家自然科学基金(51331005;51631008;51690163;51771148);国家重点研发计划项目(2016YFB0701400;2017YFB0702900);中央高校基本科研基金(3102017ZY054; 3102018jcc009)
作者简介:  岳全召,2009年6月毕业于青岛科技大学,获得工学学士学位。现为西北工业大学凝固技术国家重点实验室的博士研究生,在傅恒志院士与刘林教授的共同指导下进行研究。目前主要研究领域为镍基单晶高温合金蠕变行为与机制。刘林,西北工业大学材料学院教授、博士研究生导师。linliu@nwpu.edu.cn
引用本文:    
岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
YUE Quanzhao, LIU Lin, YANG Wenchao, HUANG Taiwen, SUN Dejian, HUO Miao, ZHANG Jun, FU Hengzhi. Research Progress of Creep Behaviors in Advanced Ni-based Single CrystalSuperalloys. Materials Reports, 2019, 33(3): 479-489.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201903015  或          http://www.mater-rep.com/CN/Y2019/V33/I3/479
1 Reed R C. The Superalloys: Fundamentals and Applications, Cambridge University Press, UK,2006.
2 Sato A, Harada H, Yeh A C, et al. In: Superalloys 2008. Warrendale,2008,pp.131.
3 Takebe Y, Yokokawa T, Kobayashi T, et al. Journal of the Japan Institute of Metals,2015,79,227.
4 Guo J T. Materials Science and Engineering for Superalloys, Science Press, China,2008(in Chinese).
郭建亭.高温合金材料学(上)应用基础理论,科学出版社,2008.
5 Nabarro F R N, De Villiers H L. The Physics of Creep: Creep and Creep-resistant Alloys, CRC Press, USA,1995.
6 Sims C T, Stoloff N S, Hagel W C. Superalloys II, John Wiley & Sons, New York,1987.
7 Murphy H J, Sims C T, Beltran A M. Journal of Metals,1968,20,46.
8 Mishima Y, Ochiai S, Hamao N, et al. Transactions of the Japan Institute of Metals,1986,27,656.
9 Geddes B, Leon H, Huang X. Superalloys: Alloying and Performance, ASM International, USA,2010.
10 Sherby O D, Burke P M. Progress in Materials Science,1968,13,323.
11 Shang S L, Zacherl C L, Fang H Z, et al. Journal of Physics: Condensed Matter,2012,24,1.
12 Yuan Y, Kawagishi K, Koizumi Y, et al. Materials Science and Enginee-ring A,2014,608,95.
13 Pollock T M, Field R D. In: Dislocation in Solids, Volume 11, Nabarro F R N, Duesbery M S, ed., Elsevier, Netherlands,2002,pp.544.
14 Karunaratne M S A, Carter P, Reed R C. Materials Science and Enginee-ring A,2000,281,229.
15 Karunaratne M S A, Reed R C. Acta Materialia,2003,51,2905.
16 Liu S H, Wen M R, Liu W Q, et al. Materials & Design,2017,130,157.
17 Zhu Z, Basoalto H, Warnken N, et al. Acta Materialia,2012,60,4888.
18 Blavette D, Caron P, Khan T. Scripta Metallurgica,1986,20,1395.
19 Blavette D, Cadel E, Deconihout B. Materials Characterization,2000,44,133.
20 Blavette D, Cadel E, Pareige C, et al. Microscopy and Microanalysis,2007,13,464.
21 Warren P J, Cerezo A, Smith G D W. Materials Science and Engineering A,1998,250,88.
22 Rüsing J, Wanderka N, Czubayko U, et al. Scripta Materialia,2002,46,235.
23 Mottura A, Warnken N, Miller M K, et al. Acta Materialia,2010,58,931.
24 Mottura A, Finnis M W, Reed R C. Acta Materialia,2012,60,2866.
25 Callister W D, Rethwisch D G, Fundamentals of Materials Science and Engineering: An Integrated Approach, Fifth ed., John Wiley & Sons, USA,2015.
26 Smith W, Hashemi J. Foundations of Materials Science and Engineering, Fourth ed., McGraw-Hill Higher Education, USA,2006.
27 Durand-Charre M, The Microstructure of Superalloys, Gordon and Breach Science Publishers, Netherlands,1997.
28 Simonetti M, Caron P. Materials Science and Engineering A,1998,254,1.
29 Kozar R W, Suzuki A, Milligan W W, et al. Metallurgical and Materials Transactions A,2009,40,1588.
30 Vorontsov V A, Shen C, Wang Y, et al. Acta Materialia,2010,58,4110.
31 Picasso A, Somoza A, Tolley A. Journal of Alloys and Compounds,2009,479,129.
32 Long H B, Mao S C, Liu Y N, et al. Journal of Alloys and Compounds,2018,743,203.
33 Murakumo T, Kobayashi T, Koizumi Y, et al. Acta Materialia,2004,52,3737.
34 Tan X P. Effects of Ru in single crystal Ni-based superalloys. Ph.D. Thesis, Chinese Academy of Sciences, China,2012(in Chinese).
谭喜鹏.Ru在几种镍基单晶高温合金中的作用研究.博士学位论文,中国科学院金属研究所,2012.
35 Cormier J. In: Superalloys 2016. Warrendale,2016,pp.385.
36 Epishin A, Fedelich B, Nolze G, et al. Metallurgical and Materials Transactions A,2018,1(https:∥doi.org/10.1007/s11661-018-4729-6).
37 Ricks R A, Porter A J, Ecob R C. Acta Metallurgica,1983,31,43.
38 Chen J Y, Zhao B, Feng Q, et al. Acta Metallurgica Sinica,2010,46(8),897(in Chinese).
陈晶阳,赵宾,冯强,等.金属学报,2010,46(8),897.
39 Nathal M V. Metallurgical Transactions A,1987,18,1961.
40 Neumeier S, Pyczak F, Göken M. In: Superalloys 2008. Warrendale,2008,pp.109.
41 Shi Q Y. Effects of multiple alloying elements on microstructure and high-temperature low-stress creep behavior in fourth generation Ni-based single crystal superalloys. Ph.D. Thesis, University of Science and Technology Beijing, China,2014(in Chinese).
石倩颖.多组元作用对第四代镍基单晶高温合金组织和高温低应力蠕变行为的影响.博士学位论文,北京科技大学,2014.
42 Nathal M V, MacKay R A, Miner R V. Metallurgical Transactions A,1989,20,133.
43 Mughrabi H. In: Proceedings of Johannes Weertman Symposium of TMS, Anaheim,1996,pp.267.
44 Yang W C, Yue Q Z, Cao K L, et al. Materials Characterization,2018,137,127.
45 Tinga T, Brekelmans W A M, Geers M G D. Computational Materials Science,2009,47,471.
46 Chen F Y. The effect of pre-rafting on low temperature and high stress creep behavior of Ni-based single crystal superalloys. Master’s Thesis, Northwestern Technical University, China,2017(in Chinese).
陈方友.预筏化对镍基单晶高温合金低温高应力蠕变性能的影响.硕士学位论文,西北工业大学,2017.
47 Kamaraj M. Sadhana,2003,28,115.
48 Van Sluytman J S, Pollock T M. Acta Materialia,2012,50,1771.
49 Biermann H, Strehler M, Mughrabi H. Scripta Metallurgica et Materialia,1995,32,1405.
50 Glatzel U, Müller A. Scripta Metallurgica et Materialia,1994,31,285.
51 Schulze C, Feller-Kniepmeier M. Materials Science and Engineering A,2000,281,204.
52 Field R D, Pollock T M, Murphy W H. In: Superalloys 1992, Warrendale,1992,pp.557.
53 Zhang J X, Murakumo T, Harada H, et al. Scripta Materialia,2003,48,287.
54 Koizumi Y, Kobayashi T, Yokokawa T, et al. In: Superalloys 2004, Warrendale,2004,pp.35.
55 Dirand L, Cormier J, Jacques A, et al. Materials Characterization,2013,77,32.
56 Gabb T P, Draper S L, Hull D R, et al. Materials Science and Enginee-ring A,1989,118,59.
57 Yue Q Z, Liu L, Yang W Z, et al. Materials Science and Engineering A, In press. https:∥doi.org/10.1016/j.msea.2018.10.063.
58 Hellman O C, Vandenbroucke J A, Rüsing J, et al. Microscopy and Microanalysis,2000,6,437.
59 Huang M, Cheng Z Y, Xiong J C, et al. Acta Materialia,2014,76,294.
60 Sun F, Zhang J X, Mao S C, et al. Journal of Alloys and Compounds,2015,618,750.
61 Ding Q Q, Li S Z, Chen L Q, et al. Acta Materialia,2018,154,137.
62 Nembach E, Suzuki K, Ichihara M, et al. Philosophical Magazine A,1985,51,607.
63 Nembach E. Particle Strengthening of Metals and Alloys, John Wiley & Sons, USA,1997.
64 Kruml T, Conforto E, Lo Piccolo B, et al. Acta Materialia,2002,50,5091.
65 Crudden D J, Mottura A, Warnken N, et al. Acta Materialia,2014,75,356.
[1] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[2] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[3] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[4] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[5] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[6] 刘武, 鲁金涛, 黄锦阳, 党莹樱, 赵新宝, 赵麦群, 袁勇. 模拟烟灰/气腐蚀对Super304H钢高温持久性能的影响[J]. 材料导报, 2018, 32(16): 2787-2792.
[7] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[8] 丁学明, 周素洪, 叶兵, 蒋海燕, 王渠东, 丁文江. 锌铜钛合金的研究进展与应用*[J]. 《材料导报》期刊社, 2017, 31(3): 38-43.
[9] 方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
[10] 田兰兰, 刘军, 何滨, 陈建恩, 王肖锋, 葛为民. 基于C(t)积分及参数Ac的P92钢高温蠕变裂纹扩展研究*[J]. 《材料导报》期刊社, 2017, 31(18): 141-145.
[11] 蒋睿哲, 顾玉丽, 何玉怀. 单晶高温合金DD6不同状态下的元素分布与力学行为*[J]. 《材料导报》期刊社, 2017, 31(12): 93-97.
[12] 朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed