Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1747-1751    https://doi.org/10.11896/j.issn.1005-023X.2018.10.033
  计算模拟 |
基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征
郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋
西北大学化工学院,西安 710069
Characterization of Small-angle Grain Boundary Evolution During Creep of P91 Steel Using EBSD Technique
GUO Miaomiao,LIU Xinbao,ZHU Lin,ZHANG Qi,LIU Jianqiu
College of Chemical Engineering,Northwest University,Xi’an 710069
下载:  全 文 ( PDF ) ( 2316KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在620 ℃、145 MPa条件下对给定的P91钢进行高温蠕变持久与间断试验,采用电子背散射衍射(EBSD)技术研究其在蠕变过程中小角度晶界的演化行为。通过引入EBSD图像中的取向差分布来表征小角度晶界处(0.5~5°)的边界位错密度,分析了边界位错密度在蠕变过程中与小角度边界的数量、塑性应变以及内部微观组织演化之间的关系。此外,通过改变EBSD像素点与像素点之间的计算步长,探讨了步长选择对边界位错密度计算结果的影响。结果表明,小角度晶界处的位错密度在蠕变过程中先迅速上升,在最小蠕变率处达到极值后缓慢下降,直到最后基本保持不变;同时,EBSD的计算步长越小,得到的位错密度值越准确。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭苗苗
刘新宝
朱 麟
张 琦
刘剑秋
关键词:  P91钢  蠕变  电子背散射衍射  小角度晶界  位错密度    
Abstract: The high-temperature creep and interrupted creep tests of P91 steel were carried out under the stress of 145 MPa at 620 ℃. The evolution of small-angle grain boundary during creep was investigated by electron backscatter diffraction (EBSD) technique. Meanwhile, the misorientation distribution in the EBSD image was introduced to characterize the dislocation density of small-angle grain boundary with the misorientation of adjacent grains from 0.5° to 5°. By these methods, the relationships between the boundary dislocation density, the number of small-angle grain boundaries, plastic strain, and internal microstructure evolution were discussed during creep. Besides, the influence of calculation step size on the boundary dislocation density was analyzed in detail. The results manifested that the dislocation density at the small-angle boundaries increased rapidly from the primary creep to the beginning of the secondary creep. Then, it reached a peak when the creep rate was minimum. Afterwards, it decreased slowly and then remained constant until the creep rupture. Moreover, it indicated that the smaller the step size of EBSD, the more accurate the dislocation density value can be obtained.
Key words:  P91 steel    creep    electron backscatter diffraction    small-grain boundary    dislocation density
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG144  
基金资助: 国家自然科学基金(51371142)
通讯作者:  刘新宝:通信作者,男,1976年生,教授,博士研究生导师,研究方向为先进能源化工装备材料制备、材料损伤分析与信赖域评价、材料组织控制与物理性能评价 E-mail:xbliu2011@163.com   
作者简介:  郭苗苗:女,1993年生,硕士研究生,研究方向为金属材料蠕变性能及微观组织演化 E-mail:guomiaomiao_nwu@163.com
引用本文:    
郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
GUO Miaomiao,LIU Xinbao,ZHU Lin,ZHANG Qi,LIU Jianqiu. Characterization of Small-angle Grain Boundary Evolution During Creep of P91 Steel Using EBSD Technique. Materials Reports, 2018, 32(10): 1747-1751.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.033  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1747
1 Zhao J, Li D M, Fang Y Y. Statistical analysis and reliability prediction of creep rupture property for T91/P91 steel[J]. Acta Metallurgica Sinica,2009,45(7):835(in Chinese).
赵杰,李东明,方园园.T91/P91钢持久性能的统计分析和可靠性预测[J].金属学报,2009,45(7):835.
2 Zhao C L, Liu X B, Hao Q E, et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components[J]. Materials Review A: Review Papers,2014,28(12):55(in Chinese).
赵彩丽,刘新宝,郝巧娥,等.高温金属构件蠕变寿命预测的研究进展[J].材料导报:综述篇,2014,28(12):55.
3 Gao Y J, Huang L L, Luo Z R, et al. Phase field crystal simulation dislocation movement and reaction[J]. Acta Metallurgica Sinica,2014,50(1):110(in Chinese).
高英俊,黄礼琳,罗志荣,等.晶界位错运动与位错反应过程的晶体相场模拟[J].金属学报,2014,50(1):110.
4 Lu C J, Jiang L T, Wang Y L, et al. Simulating structure of dislocation and its evolution in low angle grain boundary by phase field crystal method[J]. Guangxi Sciences,2013,20(4):316(in Chinese).
卢成健,蒋丽婷,王玉玲,等.晶体相场法模拟小角度晶界的位错结构及其演化[J].广西科学,2013,20(4):316.
5 He W, Ma W, Pantleon W. Microstructure of individual grains in cold-rolled aluminium from orientation inhomogeneties resolved by electron backscattering diffraction[J]. Materials Science & Enginee-ring: A,2008,494:21.
6 Berecz T, Jenei P, Csore A, et al. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite[J]. Materials Characterization,2016,113:117.
7 Li F, Huang H B. Development and application of the function of electron backscattered diffraction analysis[J]. Research and Exploration in Laboratory,2011,30(11):217(in Chinese).
李凡,黄海波.电子背散射衍射分析功能的开发及其应用[J].实验室研究与探索,2011,30(11):217.
8 Morawiec A. Orientations and rotations[M]. Berlin: Springer-Verlag,2004:1.
9 Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scripta Materialia,2008,58:994.
10 Kostka A, Tak K, Hellmig R, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels[J]. Acta Materialia,2007, 55(2):539.
11 Zhong W L, Li W S, Wang W, et al. Microstructure and mechanical properties of P91 steel pipe after long term service[J]. Heat Treatment of Metals,2015,40(6):54(in Chinese).
钟万里,李文胜,王伟,等.P91钢管长时间服役后的组织与力学性能[J].金属热处理,2015,40(6):54.
12 Zhang B, Hu Z F, Wang Q J, et al. Creep rupture micromechanism of domestic T91 heat resistant steel at 650 ℃[J]. Heat Treatment of Metals,2010,35(9):41(in Chinese).
张斌,胡正飞,王起江,等.国产T91耐热钢650 ℃蠕变断裂微观机理[J].金属热处理,2010,35(9):41.
13 Taylor A S, Hodgson P D. Dynamic behavior of 304 stainless steel during high Z deformation[J]. Materials Science & Engineering: A,2011,528(9):3310.
14 Pesicka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels[J]. Materials Science & Engineering: A,2008,387:176.
15 冯端.金属物理学[M].北京:科学出版社,1999:52.
16 Sauzay M. Modelling of the evolution of micro-grain misorientation during creep of tempered martensite ferritic steels[J]. Materials Science and Engineering: A,2009,510: 74.
17 Sklenicka V, Kucharova K, Svoboda M, et al. Long-term creep behavior of 9%—12% Cr power plant steels[J]. Materials Characterization,2003,51:35.
18 Pesicka J, Kuzel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Materialia,2003,51:4847.
19 Morito S, Nishikawa J, Maki T. Dislocation density within lath martensite in Fe-C and Fe-Ni alloys[J]. ISIJ International,2003,43(9):1475.
20 Sandvik B P J, Wayman M. Characteristics of lath martensite: Part Ⅱ. The martensite-austenite interface[J]. Metallurgical Transactions:A,1983,14:823.
[1] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[2] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[3] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[4] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[5] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[6] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[7] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[8] 刘武, 鲁金涛, 黄锦阳, 党莹樱, 赵新宝, 赵麦群, 袁勇. 模拟烟灰/气腐蚀对Super304H钢高温持久性能的影响[J]. 材料导报, 2018, 32(16): 2787-2792.
[9] 王俊, 司乃潮, 王正军, 刘光磊, 司松海. 锻造热处理工艺对Al-7Si-1.6Cu合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 70-74.
[10] 丁学明, 周素洪, 叶兵, 蒋海燕, 王渠东, 丁文江. 锌铜钛合金的研究进展与应用*[J]. 《材料导报》期刊社, 2017, 31(3): 38-43.
[11] 方瑞杰,刘军,陈建恩,王肖锋. 多耦合拘束效应对P92钢蠕变裂纹扩展行为的影响*[J]. 材料导报编辑部, 2017, 31(22): 153-158.
[12] 田兰兰, 刘军, 何滨, 陈建恩, 王肖锋, 葛为民. 基于C(t)积分及参数Ac的P92钢高温蠕变裂纹扩展研究*[J]. 《材料导报》期刊社, 2017, 31(18): 141-145.
[13] 陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
[14] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[15] 蒋睿哲, 顾玉丽, 何玉怀. 单晶高温合金DD6不同状态下的元素分布与力学行为*[J]. 《材料导报》期刊社, 2017, 31(12): 93-97.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed