Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1747-1751    https://doi.org/10.11896/j.issn.1005-023X.2018.10.033
  计算模拟 |
基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征
郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋
西北大学化工学院,西安 710069
Characterization of Small-angle Grain Boundary Evolution During Creep of P91 Steel Using EBSD Technique
GUO Miaomiao,LIU Xinbao,ZHU Lin,ZHANG Qi,LIU Jianqiu
College of Chemical Engineering,Northwest University,Xi’an 710069
下载:  全 文 ( PDF ) ( 2316KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在620 ℃、145 MPa条件下对给定的P91钢进行高温蠕变持久与间断试验,采用电子背散射衍射(EBSD)技术研究其在蠕变过程中小角度晶界的演化行为。通过引入EBSD图像中的取向差分布来表征小角度晶界处(0.5~5°)的边界位错密度,分析了边界位错密度在蠕变过程中与小角度边界的数量、塑性应变以及内部微观组织演化之间的关系。此外,通过改变EBSD像素点与像素点之间的计算步长,探讨了步长选择对边界位错密度计算结果的影响。结果表明,小角度晶界处的位错密度在蠕变过程中先迅速上升,在最小蠕变率处达到极值后缓慢下降,直到最后基本保持不变;同时,EBSD的计算步长越小,得到的位错密度值越准确。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭苗苗
刘新宝
朱 麟
张 琦
刘剑秋
关键词:  P91钢  蠕变  电子背散射衍射  小角度晶界  位错密度    
Abstract: The high-temperature creep and interrupted creep tests of P91 steel were carried out under the stress of 145 MPa at 620 ℃. The evolution of small-angle grain boundary during creep was investigated by electron backscatter diffraction (EBSD) technique. Meanwhile, the misorientation distribution in the EBSD image was introduced to characterize the dislocation density of small-angle grain boundary with the misorientation of adjacent grains from 0.5° to 5°. By these methods, the relationships between the boundary dislocation density, the number of small-angle grain boundaries, plastic strain, and internal microstructure evolution were discussed during creep. Besides, the influence of calculation step size on the boundary dislocation density was analyzed in detail. The results manifested that the dislocation density at the small-angle boundaries increased rapidly from the primary creep to the beginning of the secondary creep. Then, it reached a peak when the creep rate was minimum. Afterwards, it decreased slowly and then remained constant until the creep rupture. Moreover, it indicated that the smaller the step size of EBSD, the more accurate the dislocation density value can be obtained.
Key words:  P91 steel    creep    electron backscatter diffraction    small-grain boundary    dislocation density
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG144  
基金资助: 国家自然科学基金(51371142)
通讯作者:  刘新宝:通信作者,男,1976年生,教授,博士研究生导师,研究方向为先进能源化工装备材料制备、材料损伤分析与信赖域评价、材料组织控制与物理性能评价 E-mail:xbliu2011@163.com   
作者简介:  郭苗苗:女,1993年生,硕士研究生,研究方向为金属材料蠕变性能及微观组织演化 E-mail:guomiaomiao_nwu@163.com
引用本文:    
郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
GUO Miaomiao,LIU Xinbao,ZHU Lin,ZHANG Qi,LIU Jianqiu. Characterization of Small-angle Grain Boundary Evolution During Creep of P91 Steel Using EBSD Technique. Materials Reports, 2018, 32(10): 1747-1751.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.033  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1747
1 Zhao J, Li D M, Fang Y Y. Statistical analysis and reliability prediction of creep rupture property for T91/P91 steel[J]. Acta Metallurgica Sinica,2009,45(7):835(in Chinese).
赵杰,李东明,方园园.T91/P91钢持久性能的统计分析和可靠性预测[J].金属学报,2009,45(7):835.
2 Zhao C L, Liu X B, Hao Q E, et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components[J]. Materials Review A: Review Papers,2014,28(12):55(in Chinese).
赵彩丽,刘新宝,郝巧娥,等.高温金属构件蠕变寿命预测的研究进展[J].材料导报:综述篇,2014,28(12):55.
3 Gao Y J, Huang L L, Luo Z R, et al. Phase field crystal simulation dislocation movement and reaction[J]. Acta Metallurgica Sinica,2014,50(1):110(in Chinese).
高英俊,黄礼琳,罗志荣,等.晶界位错运动与位错反应过程的晶体相场模拟[J].金属学报,2014,50(1):110.
4 Lu C J, Jiang L T, Wang Y L, et al. Simulating structure of dislocation and its evolution in low angle grain boundary by phase field crystal method[J]. Guangxi Sciences,2013,20(4):316(in Chinese).
卢成健,蒋丽婷,王玉玲,等.晶体相场法模拟小角度晶界的位错结构及其演化[J].广西科学,2013,20(4):316.
5 He W, Ma W, Pantleon W. Microstructure of individual grains in cold-rolled aluminium from orientation inhomogeneties resolved by electron backscattering diffraction[J]. Materials Science & Enginee-ring: A,2008,494:21.
6 Berecz T, Jenei P, Csore A, et al. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite[J]. Materials Characterization,2016,113:117.
7 Li F, Huang H B. Development and application of the function of electron backscattered diffraction analysis[J]. Research and Exploration in Laboratory,2011,30(11):217(in Chinese).
李凡,黄海波.电子背散射衍射分析功能的开发及其应用[J].实验室研究与探索,2011,30(11):217.
8 Morawiec A. Orientations and rotations[M]. Berlin: Springer-Verlag,2004:1.
9 Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scripta Materialia,2008,58:994.
10 Kostka A, Tak K, Hellmig R, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels[J]. Acta Materialia,2007, 55(2):539.
11 Zhong W L, Li W S, Wang W, et al. Microstructure and mechanical properties of P91 steel pipe after long term service[J]. Heat Treatment of Metals,2015,40(6):54(in Chinese).
钟万里,李文胜,王伟,等.P91钢管长时间服役后的组织与力学性能[J].金属热处理,2015,40(6):54.
12 Zhang B, Hu Z F, Wang Q J, et al. Creep rupture micromechanism of domestic T91 heat resistant steel at 650 ℃[J]. Heat Treatment of Metals,2010,35(9):41(in Chinese).
张斌,胡正飞,王起江,等.国产T91耐热钢650 ℃蠕变断裂微观机理[J].金属热处理,2010,35(9):41.
13 Taylor A S, Hodgson P D. Dynamic behavior of 304 stainless steel during high Z deformation[J]. Materials Science & Engineering: A,2011,528(9):3310.
14 Pesicka J, Dronhofer A, Eggeler G. Free dislocations and boundary dislocations in tempered martensite ferritic steels[J]. Materials Science & Engineering: A,2008,387:176.
15 冯端.金属物理学[M].北京:科学出版社,1999:52.
16 Sauzay M. Modelling of the evolution of micro-grain misorientation during creep of tempered martensite ferritic steels[J]. Materials Science and Engineering: A,2009,510: 74.
17 Sklenicka V, Kucharova K, Svoboda M, et al. Long-term creep behavior of 9%—12% Cr power plant steels[J]. Materials Characterization,2003,51:35.
18 Pesicka J, Kuzel R, Dronhofer A, et al. The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels[J]. Acta Materialia,2003,51:4847.
19 Morito S, Nishikawa J, Maki T. Dislocation density within lath martensite in Fe-C and Fe-Ni alloys[J]. ISIJ International,2003,43(9):1475.
20 Sandvik B P J, Wayman M. Characteristics of lath martensite: Part Ⅱ. The martensite-austenite interface[J]. Metallurgical Transactions:A,1983,14:823.
[1] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[2] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[3] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[4] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[5] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[6] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[7] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[8] 关海昆, 李全安, 陈晓亚, 张帅, 王颂博. Mg-11Gd-2Y-1.5Ag-0.5Zr合金的高温蠕变行为[J]. 材料导报, 2021, 35(6): 6126-6130.
[9] 孙茗, 庄景巍, 邓海亮, 陈子洋, 斯松华, 张瑞敏. 高温抗蠕变铝合金及铝基复合材料研究进展[J]. 材料导报, 2021, 35(11): 11137-11144.
[10] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[11] 戴文亭, 郝如意, 李颖松, 常孟元, 郭威. 疏水性纳米白炭黑沥青混合料的蠕变参数对动稳定度的敏感性分析[J]. 材料导报, 2020, 34(Z1): 237-240.
[12] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[13] 王兵, 乔及森, 夏宗辉. 应变速率对纯铝变形结构和取向的影响[J]. 材料导报, 2020, 34(24): 24104-24108.
[14] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[15] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed