Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22030291-7    https://doi.org/10.11896/cldb.22030291
  金属与金属基复合材料 |
刀具前角对超声复合加工成形切屑组织与性能的影响
孙海猛1, 牛赢1,2,*, 焦锋1, 王壮飞1
1 河南理工大学机械与动力工程学院,河南 焦作 454003
2 西峡县内燃机进排气管有限责任公司,河南 南阳 474500
Effect of Tool Rake Angle on Microstructure and Properties of Ultrasonic Compound Machining Formed Chip
SUN Haimeng1, NIU Ying1,2,*, JIAO Feng1, WANG Zhuangfei1
1 School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 Xixia County Internal Combustion Engine Intake and Exhaust Pipe Limited Liability Company, Nanyang 474500, Henan, China
下载:  全 文 ( PDF ) ( 19712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超细晶纯铜作为重要的基础材料和功能材料成为当前金属材料的研究热点,本工作在大应变挤压-切削法(Large strain extrusion machining,LSEM)的基础上提出超声复合切削法(Ultrasonic compound cutting,UCC)来制备超细晶纯铜。超声复合切削中刀具前角是影响切屑应变、晶粒尺寸、位错密度及性能的关键要素,为了研究刀具前角对纯铜切屑组织和性能的影响,基于ABAQUS软件建立超声复合切削三维有限元模型,分析切削变形区等效应变、等效应变率和切削温度的变化;设计单因素试验,分析刀具前角和超声振动对切屑微观组织、位错密度和显微硬度的影响。结果表明:随着刀具前角的增加,等效应变和切削温度逐渐减小,等效应变率会先增大后减小。与LSEM切屑相比,加入超声振动后切屑晶粒细化程度和位错密度均提高,硬度增加5%。当刀具前角为30°时,切屑晶粒由粗晶细化至亚微米级拉长晶,宏观硬度从基体的92.5HV提高至131.8HV;当刀具前角为15°时,晶粒进一步细化为等轴细晶,位错密度为1.14×1013 m-2,硬度提高至184.3HV,此时纯铜切屑的硬度符合Hall-Petch关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙海猛
牛赢
焦锋
王壮飞
关键词:  刀具前角  超声复合切削法  微观组织  位错密度  硬度    
Abstract: Ultrafine grained pure copper as an important basic material and functional material has become the current research hotspot of metal mate-rials. In this work, ultrasonic compound cutting was proposed to prepare ultrafine grained pure copper based on large strain extrusion machining. In UCC, the tool rake angle is the key factor affecting chip strain, grain size, dislocation density and properties. In order to study the effect of tool rake angles on the microstructure and properties of pure copper chip. A 3D Finite element analysis(FEM) model of ultrasonic compound cutting was established based on ABAQUS analysis software, and the change of equivalent strain, equivalent strain rate and cutting temperature in the shear deformation zone were analyzed. Single-factor tests were designed to analyze the effects of tool rake angle and ultrasonic vibration on chip microstructure, dislocation density and micro-hardness. The results show that:With the increase of tool rake angle, the equal strain and the cutting temperature gradually decrease, the equal strain rate first increases and then decreases. Compared with LSEM chip, the grain refinement degree and dislocation density of chip has be improved after adding ultrasonic vibration, and the hardness also increase by 5%. When the tool rake angle is 30°, the chip grain is refined from coarse grain to submicron elongated grain, and the macro-hardness is increased from 92.5HV to 131.8HV; when the tool rake angle is 15°, the grain is further refined into equiaxed fine grain, the dislocation density is 1.14×1013 m-2 and the hardness is also increased to 184.3HV. At this time, the hardness of pure copper chips conforms to the Hall-Petch relationship.
Key words:  tool rake angle    ultrasonic compound cutting    microstructure    dislocation density    hardness
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG506.5  
基金资助: 河南省自然科学基金(202300410172);国家自然科学基金(52175399);河南省重点研发与推广专项(212102210056)
通讯作者:  *牛赢,2018年博士毕业于河南理工大学,现任河南理工大学机械与动力工程学院校聘副教授、硕士研究生导师,主要从事精密、超精密加工技术方面的教学与科研工作。参与或主持国家自然科学基金重点项目、河南省自然科学基金、等多项课题。授权发明专利4项,在国内外学术期刊发表论文40余篇,其中SCI/EI收录20余篇。niuying@hpu.edu.cn   
作者简介:  孙海猛,2019年毕业于郑州轻工业大学,2022年毕业于河南理工大学。主要研究领域为超声加工技术与装备,难加工材料高效精密加工技术。申请国家发明专利1项,发表SCI/EI论文7篇。
引用本文:    
孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
SUN Haimeng, NIU Ying, JIAO Feng, WANG Zhuangfei. Effect of Tool Rake Angle on Microstructure and Properties of Ultrasonic Compound Machining Formed Chip. Materials Reports, 2023, 37(17): 22030291-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030291  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22030291
1 Zhang J W, Shi F J, Ye S Z, et al. Forging & Stamping Technology, 2020, 45(4), 21(in Chinese).
张健伟, 石凤健, 叶思珍, 等. 锻压技术, 2020, 45(4), 21.
2 Jiao F, Sun H M, Niu Y, et al. Surface Technology, 2022, 51(4), 37(in Chinese).
焦锋, 孙海猛, 牛赢, 等. 表面技术, 2022, 51(4), 37.
3 Zhang S P, Wang J L, Zhang Z W, et al. Transactions of Materials and Heat Treatment, 2020, 41(3), 1(in Chinese).
张苏鹏, 王军丽, 章震威, 等. 材料热处理学报, 2020, 41(3), 1.
4 Xue K M, Liu M, Ding Y G, et al. China Mechanical Engineering, 2018, 29(13), 1627(in Chinese).
薛克敏, 刘梅, 丁永根, 等. 中国机械工程, 2018, 29(13), 1627.
5 Rahmatabadi D, Shahmirzaloo A, Hashemi R, et al. Materials Research Express, 2019, 6(8), 86542.
6 Chen C H, Jiang L Y, Liu C L, et al. Materials Reports, 2019, 33(8), 1367(in Chinese).
陈琛辉, 蒋璐瑶, 刘成龙, 等. 材料导报, 2019, 33(8), 1367.
7 Brown T L, Saldana C, Murthy T G, et al. Acta Materialia, 2009, 57(18), 5491.
8 Chiffre L D. International Journal of Machine Tool Design and Research, 1976, 16, 137.
9 Sun H M, Jiao F, Niu Y, et al. The International Journal of Advanced Manufacturing Technology, 2022, 120 (9-10), 5763.
10 Mert E, Wilfredo M, Kevin P T, et al. Acta Materialia, 2012, 60(5), 2031.
11 Zou Z J, Wu B X, Liu L W. Heat Treatment of Metals, 2018, 43(1), 121(in Chinese).
邹志杰, 吴邦晛, 刘良伟. 金属热处理, 2018, 43(1), 121.
12 Sharma V K, Kumar V, Singh J R. Machining Science and Technology, 2020, 24(1), 42.
13 Deng W J, He Y T, Lin P, et al. Materials and Manufacturing Processes, 2014, 29(5), 621.
14 Swaminathan S, Shankar M R, Lee S, et al. Materials Science and Engineering A, 2005, 410, 358.
15 Zhang S N, Pan L W, Luo T, et al. Materials Reports, 2018, 32(14), 2452(in Chinese).
张赛楠, 潘利文, 罗涛, 等. 材料导报, 2018, 32(14), 2452.
16 Peng Z L, Zhang X Y, Zhang D Y. Ultrasonics, 2020, 111, 106340.
17 Yang D Q, Wang X W, Peng Y, et al. Materials Reports, 2022, 36(1), 126 (in Chinese).
杨东青, 王小伟, 彭勇, 等. 材料导报, 2022, 36(1), 126.
18 Lin Q, Xie P C, Hu J B, et al. Acta Physica Sinica, 2021, 70(20), 113(in Chinese).
林茜, 谢普初, 胡建波, 等. 物理学报, 2021, 70(20), 113.
19 Johnson G R, Cook W H. Engineering Fracture Mechanics, 1985, 21(1), 31.
20 Tugrul Özel. International Journal of Machine Tools and Manufacture, 2005, 46(5), 518.
21 Wang P H, Yue X J, Zong C G, et al. Vacuum, 2021, 192, 110396.
22 Niu Y, Jiao F, Zhao B, et al. Journal of Mechanical Engineering, 2019, 55(13), 224(in Chinese).
牛赢, 焦锋, 赵波, 等. 机械工程学报, 2019, 55(13), 224.
23 Williamson G K, Smallman R E. Philosophical Magazine, 1956, 1(1), 34.
24 Xu S J, Shi C S, Zhao N Q, et al. Acta Physica Sinica, 2012, 61(11), 391(in Chinese).
徐树杰, 师春生, 赵乃勤, 等. 物理学报, 2012, 61(11), 391.
25 Hall E O. Proceedings of the Physical Society. Section B, 1951, 64(9), 747.
26 Ye C, Sergey S, Dong L, et al. Journal of Applied Physics, 2014, 115(21), 213519.
[1] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[2] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[3] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[4] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[5] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[6] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[7] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[8] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[9] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[10] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[11] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[12] 马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
[13] 黄健康, 吴昊盛, 于晓全, 刘光银, 余淑荣. 钛合金电弧增材制造工艺及微观组织调控的研究现状[J]. 材料导报, 2023, 37(14): 21100070-6.
[14] 黄忠利, 黄健康, 张宏福, 于晓全, 刘光银, 樊丁. 不同脉冲模式下熔滴过渡对铝合金增材微观组织及力学性能的影响[J]. 材料导报, 2023, 37(14): 21100128-5.
[15] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed