Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21070036-10    https://doi.org/10.11896/cldb.21070036
  金属与金属基复合材料 |
维氏硬度试验中的视觉检测算法研究综述
蔡成林, 李泽贤, 印峰*
湘潭大学自动化与电子信息学院,湖南 湘潭 411105
Visual Detection Algorithms in Vickers Hardness Test:a Review
CAI Chenglin, LI Zexian, YIN feng*
School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105,Hunan, China
下载:  全 文 ( PDF ) ( 15913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 维氏硬度测量法是一种常用的测量材料硬度的方法。对于传统的人工测量方法,不仅劳动强度大,并且测量过程较易受材料表面维氏压痕图像的成形影响,难以保证测量精度。相比之下,采用图像处理技术实现维氏硬度自动测量可以大幅降低劳动强度,同时对复杂测量环境具有较强的鲁棒性。维氏压痕图像的成像、图片预处理和压痕面积的获取是视觉测量的关键环节。本文介绍了相关内容的主要研究进展,分析了现有方法的特点与不足,最后讨论了维氏硬度自动测量技术领域研究的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡成林
李泽贤
印峰
关键词:  维氏硬度  硬度试验  自动测量  图像处理    
Abstract: The Vickers hardness measurement method is one of the most commonly used methods of measuring the hardness of materials.Traditional manual measurement is not only labor-intensive but also influenced by the material surface, making it difficult to guarantee measurement accuracy. In contrast, automatic Vickers hardness measurement using image processing technology can significantly reduce labor intensity and is highly robust in complex measurement environments. The imaging, pre-processing, and acquisition of the indentation vertex position of the Vickers indentation image are key aspects of visual measurement. This paper presents the main research advances in the relevant content and analyses the characteristics and shortcomings of existing methods. It also discusses the development trends of research in this technical field.
Key words:  Vickers hardness    hardness testing    automatic measurement    image processing
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TP23  
基金资助: 国家自然科学基金青年项目(61602398;U19A2083);湖南省科技厅项目(2019GK4007);国家重点研发计划(2020YFA0713501);湖南省研究生科研创新项目(CX20220551);湘潭大学研究生科研创新项目(XDCX2022Y084)
通讯作者:  *印峰,湘潭大学自动化与电子信息学院副教授、硕士研究生导师。2004年于湘潭大学自动化专业本科毕业,分别于2008年、2013年在湖南大学电气工程专业、控制科学与工程专业取得硕士与博士学位。目前主要从事图像处理、深度学习等方面的研究工作。已在《自动化学报》、Measurement、IEEE Transactions on Instrumentation and Mea-surement等期刊上发表论文10余篇。yinfeng83@126.com   
作者简介:  蔡成林,湘潭大学自动化与电子信息学院教授,博士研究生导师。1991年于湖南人文科技学院物理专业本科毕业,分别于2004年、2010年在中国科学院研究生院天体测量与天体力学专业取得硕士、博士学位。目前主要从事GNSS导航定位与无线通信等方面的研究工作。已在《测绘学报》、IEEE Transactions on Instrumentation and Measurement、IEEE Internet of Things Journal 等多个期刊上发表论文20余篇。
引用本文:    
蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
CAI Chenglin, LI Zexian, YIN feng. Visual Detection Algorithms in Vickers Hardness Test:a Review. Materials Reports, 2023, 37(8): 21070036-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070036  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21070036
1 ISO 6507-1: 2018. Metallic materials-Vickers hardness test-Part 1: Test method. 2018.
2 De Oliveira B F, Costa P B, Gomes J F S, et al. In: Advances in visualization and optimization techniques for multidisciplinary research, Singapore, 2020, pp. 265.
3 Gadermayr M, Maier A, Uhl A. In: International Symposium on Visual Computing. Greece, 2012, pp. 468.
4 Maier A, Niederbrucker G, Stenger S, et al. Journal of Electronic Imaging, Portugal, 2012, 21(2), 021114.
5 Gadermayr M, Uhl A. In: International Conference Image Analysis and Recognition. Portugal, 2012, pp. 149.
6 Rebouças F P P, Da Silveira C T, De Albuquerque V H C, et al. Journal of Testing and Evaluation, 2010, 38 (1), 88.
7 Zhu J L, Chen W, Zhang J, et al. In: The 7th National Conference on Information Acquisition and Processing. Guilin, China, 2009, pp. 4 (in Chinese).
祝建林, 陈威, 张吉, 等. 第七届全国信息获取与处理学术会议. 桂林, 2009, pp. 4.
8 Guitang W, Jianlin Z, Peiliang C. In: 2009 Third International Sympo-sium on Intelligent Information Technology Application. China, 2009, pp. 624.
9 Yang B, Zhao X Y, Yin Y S, et al. Computer Engineering and Applications, 2006(12), 16(in Chinese).
杨波, 赵秀阳, 尹衍升, 等. 计算机工程与应用, 2006(12), 16.
10 Gadermayr M, Uhl A. In: International Conference on Image and Signal Processing. Morocco, 2012, pp. 362.
11 Gadermayr M, Maier A, Uhl A. Machine vision and Applications, 2013, 24 (6), 1183.
12 Li Z, Yin F. Measurement, 2021, 186, 110200.
13 Sugimoto T, Kawaguchi T. IEEE Transactions on Industrial Electronics, 1997, 44(5), 696.
14 Mendes V, Leta F. In: Proceedings of the XVII IMEKO World Congress. Dubrovnik, Croatia, 2003, pp. 992.
15 Leta F R, Mendes V B. Engevista, 2004, 6(2), 15.
16 Domínguez-Nicolas S, Herrera-May A, García-González L, et al. Mea-surement Science and Technology, 2020, 32 (1), 015407.
17 Macedo M, Mendes V, Conci A, et al. In: Proceedings of the 13th International Conference on Systems, Signals and Image Processin. Hungar, 2006, pp. 287.
18 Ji Y, Xu A. In: 2009 2nd International Congress on Image and Signal Processing. China, 2009, pp. 1.
19 Li Y F. Research on the application of image processing techniques in hardness measurement systems. Master's Thesis, Nanjing University of Science and Technology, China, 2009 (in Chinese)
李尤丰. 图像处理技术在硬度测量系统中的应用研究. 硕士学位论文, 南京理工大学, 2009.
20 Pan Y, Shan Y, Ji Y, et al. In: Fourth International Symposium on Precision Mechanical Measurements, International Society for Optics and Photonics. China, 2008, pp. 71304C.
21 Yao L, Fang C H. IEEE Transactions on Industrial Electronics, 2006, 53 (3), 950.
22 Yao L, Fang C H. In: 10th IEEE International Conference on Fuzzy Systems. Australia, 2001, pp. 842.
23 Wu L M, Zhou Q, Den Y H, et al. Physical and Chemical Examinations (Physics Division), 2004(1), 19(in Chinese).
吴黎明, 周曲, 邓耀华, 等. 理化检验(物理分册), 2004(1), 19.
24 Wu L M, Zhou Q, Den Y H, et al. China Mechanical Engineering, 2004(6), 30(in Chinese).
吴黎明, 周曲, 邓耀华, 等. 中国机械工程, 2004(6), 30.
25 Zhou Q, Yan G Z, Zhang Y. Acta Metrologica Sinica, 2005(3), 245(in Chinese)
周曲, 颜国正, 张翼. 计量学报, 2005(3), 245.
26 Liu W J. Vickers hardness indentation segmentation based on wavelet texture analysis. Master's Thesis, Guangdong University of Technology, China, 2011 (in Chinese)
刘文娟. 小波纹理分析及维氏硬度压痕分割应用. 硕士学位论文, 广东工业大学, 2011.
27 Coelho B, Guarda A, Faria G, et al. In: Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV). USA, 2015, pp. 249.
28 Gadermayr M, Maier A, Uhl A. In: Tenth International Conference on Quality Control by Artificial Vision, International Society for Optics and Photonics. France, 2011, pp. 80000M.
29 Gadermayr M, Maier A, Uhl A. Journal of Electronic Imaging, 2012, 21 (2), 021109.
30 Maier A, Uhl A. In: 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA). USA, 2011, pp. 295.
31 Maier A, Uhl A. In: 21st European Signal Processing Conference. Morocco, 2013, pp. 1.
32 Maier A, Uhl A. International Journal of Future Generation Communication and Networking, 2012, 5(4), 1.
33 Tanaka Y, Seino Y, Hattori K, In: XXII World Congress of the International Measurement Confederation. UK, 2018, pp.062001.
34 Tanaka Y, Seino Y, Hattori K. Measurement Science and Technology, 2019, 30(6), 065012.
35 Krizhevsky A, Sutskever I, Hinton G E. Advances in neural Information Processing Systems, 2012, 25, 1097.
36 Tanaka Y, Seino Y, Hattori K. The International Journal of Advanced Manufacturing Technology, 2020, 109 (5), 1345.
37 Dominguez-Nicolas S M, Wiederhold P. In: 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Mexico, 2018, pp. 1.
38 Elizabeth I, Kumar R, Garg N, et al. MAPAN, 2019, 34(3), 317.
39 Dijmarescu M, Dijmǎrescu M, In: The 8th Edition of Modern Technologies in Industrial Engineering. Online, 2020, pp. 012026.
40 Simonyan K, Zisserman A. arXiv preprint, arXiv, 1409.1556, 2014.
41 Howard A, Zhmoginov A, Chen L C, et al. arXiv preprint, arXiv, 1801.04381, 2018.
42 Ren S, He K, Girshick R, et al. arXiv preprint, arXiv, 1506.01497, 2015.
43 Redmon J, Divvala S, Girshick R, et al. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA, 2016, pp. 779.
44 Long J, Shelhamer E, Darrell T. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. USA, 2015, pp. 3431.
45 Ronneberger O, Fischer P, Brox T. In: International Conference on Medical Image Computing and Computer-assisted Intervention. Germany, 2015, pp. 234.
46 Mathew M, Desappan K, Kumar S P, et al. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. USA, 2017, pp. 11.
47 Oh S, Kim M, Kim D, et al. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT). Indonesia, 2017, pp. 1.
48 Abdelouahab K, Pelcat M, Serot J, et al. IEEE Embedded Systems Letters, 2017, 9(4), 113.
49 Wu D, Zhang Y, Jia X, et al. In: 2019 29th International Conference on Field Programmable Logic and Applications (FPL). Spain, 2019, pp. 136.
[1] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[2] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[3] 郝哲昕, 钱春香, 周横一, 李进, 吴亚东, 张昆. 清水混凝土外观质量信息采集与分析方法及其工程应用[J]. 材料导报, 2020, 34(Z2): 233-241.
[4] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[5] 热焱, 邱克强, 李东和, 丁韧, 王梅, 徐慧, 徐颖. 高硬度Mg-5Al-2Sn-5Ca镁合金在铸态与热处理后的蠕变行为[J]. 材料导报, 2020, 34(12): 12076-12082.
[6] 邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
[7] 翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
[8] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[9] 李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed