Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1079-1088    https://doi.org/10.11896/cldb.18020144
  材料与可持续发展(二)——材料绿色制造与加工* |
焊缝跟踪过程传感与信号处理技术的研究进展
翟培卓1, 薛松柏1, 陈涛1, 孙子建2, 陈卫中2, 郭佩佩2
1 南京航空航天大学材料科学与技术学院,南京 211106
2 昆山华恒焊接股份有限公司,昆山 215347
A Technological Review on Sensing and Signal Processing in Welding Seam Tracking Process
ZHAI Peizhuo1, XUE Songbai1, CHEN Tao1, SUN Zijian2, CHEN Weizhong2, GUO Peipei2
1 College of materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
2 Kunshan Huaheng Welding Co., Ltd., Kunshan 215347
下载:  全 文 ( PDF ) ( 17527KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 焊接自动化是21世纪焊接技术迈向“数字化”、“智能化”的重要途径。在焊接自动化的实现过程中,对焊缝进行自动、快速、准确地跟踪是其中的关键技术。在自动化焊接技术诞生之前,传统的焊接操作主要靠人工来完成。然而,人工进行焊接监视跟踪的工作有两方面的缺点,一方面焊接工作的恶劣环境会对焊接工人的身体健康造成一定的损害,另一方面还会由于焊工长时间工作疲劳而影响焊接质量。
现代的焊缝跟踪技术逐渐地脱离了人为的干涉,越来越多地转向了由信号传感到计算机处理再到机构执行的全自动焊接过程。传感器相当于焊缝跟踪系统的“感官器官”,系统完全依靠传感器来感知外界焊接环境,判断焊枪与焊缝的相对位置。同时,焊接环境常常伴随着各种噪声、飞溅、高频辐射等的干扰,会明显地影响传感器所采集的信号,甚至会使得计算机对焊缝位置产生错误的判断。
因此,要想得到比较理想的数据信息,采取合适的焊接传感方式并对所采集的信号进行准确快速处理成为焊缝跟踪的迫切需要。焊缝跟踪传感器总体上可分为两大类:直接式传感器(即电弧传感器)和间接式传感器。近年来,这两类传感器都有一定的发展,如磁控电弧传感器的应用为焊缝跟踪提供了新的研究方向,间接式视觉传感器正在向小型化和简单化的方向发展。与此同时,多传感器信息融合技术的出现为克服单一传感器准确性的不足提供了新的可能性。而信号处理技术可以提高信号的信噪比,为获得准确的焊缝位置信息奠定基础。其中,电信号滤波技术正由单纯的硬件滤波逐步向软件滤波和硬件软件结合滤波的方法转变;而对于图像处理技术,图像的抗干扰能力得到进一步提高,但是还需在焊缝识别的准确性、实时性和可靠性方面继续深入研究。
本文系统介绍了焊缝跟踪过程中所用到的各种传感方式,并着重介绍了主流的电弧传感器和视觉传感器的详细分类与各自的特点。同时,本文总结了电弧传感中关键的电信号滤波技术以及视觉传感必不可少的图像处理技术的发展现状,并对焊缝跟踪未来的研究方向提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟培卓
薛松柏
陈涛
孙子建
陈卫中
郭佩佩
关键词:  焊接自动化  焊缝跟踪  焊接传感器  电信号滤波  图像处理    
Abstract: Welding automation is a crucial way towards “digitalization” and “intelligentization” of welding technology in 21st century.Welding automation can be realized with the premise of automatic, fast and accurate tracking the welding seam. Before the emergence of automatic welding technology, conventional welding operations were manually conducted. However, there are certain insufficiencies of manual monitoring and tracking of welding. On one hand, the harsh environment of welding work will do harm to the health of workers. On the other hand, the welding quality cannot be guaranteed under the long-term labor intensity brought by track and monitor welding process.
The modern welding seam tracking technology is gradually getting rid of artificial interference, turning to sensors, computer processing and automatic welding process by actuators. Sensor is regard as the “sensory organ” of the weld tracking system, and the system completely relies on sensors to perceive the external welding environment and determine the relative position of welding torch and seam. meanwhile, welding environment is often accompanied with various noise, spatter, high-frequency radiation and so forth, which will obviously affect the signal acquisition and even cause an error of judgment on the position of welding seam.
Hence, for the sake of acquiring satisfactory data, it has become an urgent need for welding seam tracking technology to employ appropriate welding sensing approach and process the acquired signals accurately and quickly. Generally, welding seam tracking sensors can be classified into direct sensors (arc sensors) and indirect sensors. In recent years, certain development have been made for both types of sensors. For instance, the application of magnetic-control arc sensors provides a new research direction for welding seam tracking, and indirect vision sensors are stepping their way to miniaturization and simplification. moreover, the emergence of multi-sensor information fusion technology creates a possibility to overcome the insufficiency in accuracy of single sensor. Besides, the signal processing technology can boost the signal-to-noise ratio, which paves the way for obtaining accurate information of seam position. The electrical signal filtering technology is changing gradually from a simple hardware filter to a software filter and combined filtering method. Concerning image processing technology, the anti-interference ability of image has been improved, yet further research should be conducted on the accuracy, real-time performance and reliability of welding seam identification.
In this article, we systematically introduce the sensing approaches applied in seam tracking process, and put emphasis on the detailed classification and characteristics of the mainstream arc sensors and visual sensors. Additionally, we summarize the development status of crucial arc sensing signal filtering technology and essential visual sensing image processing technology. Finally, we point out the future directions of welding seam tracking.
Key words:  welding automation    welding seam tracking    welding sensor    electrical signal filtering    image processing
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG409  
基金资助: 国家自然科学基金(51675269);新型钎焊材料与技术国家重点实验室开放课题基金资助(SKLABFmT201704);江苏高校优势学科建设工程资助项目
通讯作者:  xuesb@nuaa.edu.cn   
作者简介:  翟培卓,2016年6月毕业于南京航空航天大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在薛松柏教授的指导下进行研究。目前主要研究领域为先进连接技术。薛松柏,南京航空航天大学材料科学与技术学院二级教授、研究员、博士生导师,享受政府特殊津贴专家。长期以来专注于焊接材料及焊接工艺的研究,制定五项国家标准、五项机械工业部行业标准并发布实施;主持完成了三十多项国家、部、市课题的研究,共取得主要科研成果三十余项。获得2016年国家科技进步奖二等奖、2014年教育部技术发明二等奖、国防科技进步奖三等奖、江苏省科技进步三等奖等。在国内外学术刊物上发表论文320余篇,SCI收录120余篇,EI收录160余篇,论文他引300余次,单篇他引38次。
引用本文:    
翟培卓, 薛松柏, 陈涛, 孙子建, 陈卫中, 郭佩佩. 焊缝跟踪过程传感与信号处理技术的研究进展[J]. 材料导报, 2019, 33(7): 1079-1088.
ZHAI Peizhuo, XUE Songbai, CHEN Tao, SUN Zijian, CHEN Weizhong, GUO Peipei. A Technological Review on Sensing and Signal Processing in Welding Seam Tracking Process. Materials Reports, 2019, 33(7): 1079-1088.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020144  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1079
1 Lee D, Ku N, Kim T, et al.Robotics and Computer-Integrated manufacturing, 2011,27(2SI),377.
2 muhammad J, Altun H, Abo-Serie E.International Journal of Advanced manufacturing Technology, 2017,88(1-4),127.
3 Ushio m, mao W. Transactions of JWRI, 1994,23(2),135.
4 Kannatey-Asibu E.Journal of manufacturing Science & Engineering, 1997,119(4B),801.
5 Xiong Z Y, Zhang H, Pan J L.Welding Technology, 2001(5),2 (in Chinese).
熊震宇, 张华, 潘际銮. 焊接技术, 2001(5),2.
6 Kodama m, Goda H, Iwabuchi H.Welding International, 2001,15(12),952.
7 Sugitani Y, murayama m, Etoh S, et al.Nippon Kokan Technical Report Overseas, 1989(57),111.
8 Sugitani Y, Kanjo Y, murayama m.Quarterly Journal of the Japan Welding Society, 1995,13(1),28.
9 Liao B J. Study on multi-freedom intelligent welding system with arc sensor. Ph.D. Thesis, Tsinghua University, China, 1993 (in Chinese).
廖宝剑. 以电弧为传感器的多自由度智能焊接系统研究. 博士学位论文, 清华大学, 1993.
10 Kim C H, Na S J.Proceedings of the Institution of mechanical Engineers Part B-Journal of Engineering manufacture, 2001,215(9),1271.
11 Kim C H, Na S J.Proceedings of the Institution of mechanical Engineers Part B-Journal of Engineering manufacture, 2001,215(9),1281.
12 mboldyrev A, Abirzhev V, Vchernykh A.Welding International, 1992,6(10),812.
13 Hong B, Wei F L, Lai X, et al.Transactions of the China Welding Institution, 2008(5),1 (in Chinese).
洪波, 魏复理, 来鑫, 等.焊接学报, 2008(5),1.
14 Li Z K. The optimization of seam tracking sensor base on magnetic control swinging arc weld. Ph.D. Thesis, Xiangtan University, China, 2015 (in Chinese).
李振凯. 磁控摆动电弧焊缝跟踪传感器的优化.博士学位论文, 湘潭大学, 2015.
15 Xu P, Xu G, Tang X, et al.International Journal of Advanced manufacturing Technology, 2008,37(1-2),70.
16 Xu P, Tang X, Lu F, et al.International Journal of Advanced manufacturing Technology, 2007,32(9-10),918.
17 Kiddee P, Fang Z, Tan m.International Journal of Advanced manufacturing Technology, 2016,87(9-12),1.
18 Brzakovic D, Khani D T.Ieee Transactions On Robotics and Automation, 1991,7(3),343.
19 Fan C J. Weld pool characters extraction visual sensing and intelligent control during varied gap aluminum alloy pulsed GTAW process. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2008 (in Chinese).
樊重建. 变间隙铝合金脉冲GTAW熔池视觉特征获取及其智能控制研究. 博士学位论文, 上海交通大学, 2008.
20 Xu Y, Fang G, Lv N, et al.Robotics and Computer-Integrated manufacturing, 2015,32,25.
21 Dinham m, Fang G.Robotics and Computer-Integrated manufacturing, 2014,30(3),229.
22 Cao Y Y, Huang m S, Jiang L P, et al.Electric Welding machine, 2008(2),21 (in Chinese).
曹莹瑜, 黄民双, 蒋力培, 等. 电焊机, 2008(2),21.
23 Bae K, Park J.Journal of materials Processing Technology, 2006,176(1-3),111.
24 Hong B, Yan Q, Xiong B W, et al.Hot Working Technology, 2010(9),128 (in Chinese).
洪波, 闫强, 熊炳卫, 等. 热加工工艺, 2010(9),128.
25 Hu S, Liu Y, Sun D, et al.Pressure Vessel Technology, 2001(1),13 (in Chinese).
胡绳荪, 刘勇, 孙栋, 等. 压力容器, 2001(1),13.
26 Bhattacharya S, Pal K, Pal S K.Applied Soft Computing, 2012, 12(1), 498.
27 Zeng L, meng Z D, Gong Y F.Journal of Central South University(Science and Technology), 2013(S2),329 (in Chinese).
曾露, 孟正大, 龚烨飞. 中南大学学报(自然科学版), 2013(S2),329.
28 Liao B J, Wu S D, Pan J L.Transactions of the China Welding Institution, 1996(4),263 (in Chinese).
廖宝剑, 吴世德, 潘际銮. 焊接学报, 1996(4),263.
29 Nilsson J W, Riedel S. Electric Circuits, Prentice Hall Press, USA, 2015.
30 Hong B. mathematical modeling and simulating analysis for moving style welding robot system with arc sensor. Ph.D. Thesis, Xiangtan University, China, 2005 (in Chinese).
洪波. 电弧传感移动式焊接机器人的数学建模及仿真. 博士学位论文, 湘潭大学, 2005.
31 Huang J, Hong B, Pan J L, et al.Welding Technology, 2005(4),44 (in Chinese).
黄俊, 洪波, 潘际銮, 等. 焊接技术, 2005(4),44.
32 Huang H, ma H B, Lin T, et al.Journal of Shanghai Jiaotong University, 2010(S1),22 (in Chinese).
黄辉, 马宏波, 林涛, 等. 上海交通大学学报, 2010(S1),22.
33 Guo H, Chen H, Xu F, et al.Ieee Transactions On Industrial Electronics, 2013,60(9),3823.
34 Kumar A, Das B, Sharma J.International Journal of Electrical Power & Energy Systems, 2006,28(1),65.
35 Kalman R E.Journal of Basic Engineering Transactions, 1960,82,35.
36 Grewal m S.Kalman Filtering, Springer Berlin Heidelberg, Germany, 2011.
37 Zhang K, Jin X, Wu Y X.Transactions of the China Welding Institution, 2009(12),1 (in Chinese).
张轲, 金鑫, 吴毅雄. 焊接学报, 2009(12),1.
38 Gao X D, Chen Y P, Yuan R N, et al. Control Theory & Applications, 2007(6),977 (in Chinese).
高向东, 陈永平, 袁弱男, 等. 控制理论与应用, 2007(6),977.
39 Hsung T, Lun D, Siu W.IEEE Transactions On Signal Processing, 1999,47(11),3139.
40 Lu J. Signal recovery and noise reduction with wavelets. Ph.D. thesis, Dartmouth College Hanover, USA, 1993.
41 Zeng S S, Wang G R, Shi Y H, et al.Transactions of the China Welding Institution, 2009(1),13 (in Chinese).
曾松盛, 王国荣, 石永华, 等. 焊接学报, 2009(1),13.
42 Gao Y F, Zhang H, mao Z W, et al.Transactions of the China Welding Institution, 2008(4),57 (in Chinese).
高延峰, 张华, 毛志伟, 等.焊接学报, 2008(4),57.
43 Xuan Z Z, Li G H, Lu J, et al.Journal of Jilin University(Engineering and Technology Edition), 2006(4),480 (in Chinese).
宣兆志, 李国辉, 路佳, 等.吉林大学学报(工学版), 2006(4),480.
44 Xue J X, Yi Z P. Journal of mechanical Engineering, 2003(4),128 (in Chinese).
薛家祥, 易志平. 机械工程学报, 2003(4),128.
45 Hu S, Luo Y, Jiao X D, et al.Journal of Shanghai Jiaotong University, 2016(S1),59 (in Chinese).
胡胜, 罗雨, 焦向东, 等. 上海交通大学学报, 2016(S1),59.
46 Le J, Zhang H, Ye Y H, et al.Transactions of the China Welding Institution, 2015(5),5 (in Chinese).
乐健, 张华, 叶艳辉, 等. 焊接学报, 2015(5),5.
47 Wang D L, Zhang Z X, Liang Z m, et al.Transactions of the China Welding Institution, 2014(5),17 (in Chinese).
汪殿龙, 张志洋, 梁志敏, 等. 焊接学报, 2014(5),17.
48 Shen J Q. Research on seam image processing for CO2 horizontal position welding based on laser vision sensing. Ph.D. Thesis, Tianjin University, China, 2010 (in Chinese).
申俊琦. 基于激光视觉传感的CO2横焊焊缝图像处理研究. 博士学位论文, 天津大学, 2010.
49 Duan H W, Lan H, Zheng H Y, et al.Journal of Harbin University of Science and Technology, 2012(4),52 (in Chinese).
段宏伟, 兰虎, 郑红艳, 等. 哈尔滨理工大学学报, 2012(4),52.
50 Liu X W, Chen X m, Liu C Y. Transactions of the China Welding Institution, 2017(2),19 (in Chinese).
刘习文, 陈显明, 刘超英. 焊接学报, 2017,(2),19.
51 Yan Z G, Xu D, Li Y. Transactions of the China Welding Institution, 2008(7),34 (in Chinese).
鄢治国, 徐德, 李原. 焊接学报, 2008(7),34.
52 Li G J, Wang G R, Zhong J G, et al. Transactions of the China Welding Institution, 2005,26(3),58 (in Chinese).
李国进, 王国荣, 钟继光, 等. 焊接学报, 2005,26(3),58.
53 Otsu N.IEEE Transactions On Systems man & Cybernetics, 1979,9(1),62.
54 Shen J Q, Hu S D, Feng S Q.Journal of Tianjin University, 2011(4),308 (in Chinese).
申俊琦, 胡绳荪, 冯胜强.天津大学学报, 2011(4),308.
55 Xue J X, Zhang L L, Liu X.Transactions of the China Welding Institution, 2005(6),25 (in Chinese).
薛家祥, 张丽玲, 刘晓. 焊接学报, 2005(6),25.
56 Tuominen J, Lipping T. In: IEEE International Symposium on Industrial Electronics. montreal, 2006, pp. 431.
57 Shen J Q, Hu S S, Feng S Q, et al.Journal of Tianjin University, 2010(4),373 (in Chinese).
申俊琦, 胡绳荪, 冯胜强, 等. 天津大学学报, 2010(4),373.
58 Wang H W, Li S L, Cao S Y, et al.Hot Working Technology, 2012(23),141 (in Chinese).
王宏文, 李松林, 曹思源, 等. 热加工工艺, 2012(23),141.
59 molina L, Carvalho E A N, Freire E O. In: Robotic Symposium, 2008. LARS'08. IEEE Latin American. Natal, 2008, pp. 45.
60 Liu X W, Hong B, Dai T F.Laser & Infrared, 2011(7),804 (in Chinese).
刘习文, 洪波, 戴铁峰. 激光与红外, 2011(7),804.
61 Fang Z, Xu D. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin, 2009, pp. 1230.
62 Zhang Y, Lu N, Huang Y m, et al.Transactions of the China Welding Institution, 2014(8),53 (in Chinese).
章妍, 吕娜, 黄一鸣, 等.焊接学报, 2014(8),53.
[1] 李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed