Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21110123-7    https://doi.org/10.11896/cldb.21110123
  金属与金属基复合材料 |
选区激光熔化Fe-10Cu合金成形工艺优化研究
梁梦1, 黎振华2, 刘美红1,*, 罗心磊1, 解靖伟2
1 昆明理工大学机电工程学院,昆明 650500
2 昆明理工大学材料科学与工程学院,昆明 650500
Process Optimization of Selective Laser Melted Fe-10Cu Alloy
LIANG Meng1, LI Zhenhua2, LIU Meihong1,*, LUO Xinlei1, XIE Jingwei2
1 School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 31612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为优化选区激光熔化Fe-10Cu合金的工艺参数,在使用ANSYS APDL模拟计算不同激光功率和扫描速度条件下单道单层温度场、分析熔池尺寸的基础上,通过实验考察了不同条件下成形的试样的致密度、硬度和凝固组织。结果表明:在铺粉厚度为40 μm、扫描间距为100 μm的条件下,选区激光熔化Fe-10Cu合金在激光功率345.6 W、扫描速度1 000 mm/s时成形的试样的致密度和硬度最高,分别达到99.8%和38.3HRC。选区激光熔化Fe-10Cu合金凝固组织为单一α-Fe相,选区激光熔化过程快速凝固导致铜过饱和并固溶在α-Fe中,是Fe-10Cu合金硬度得到提升的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁梦
黎振华
刘美红
罗心磊
解靖伟
关键词:  Fe-10Cu合金  选区激光熔化  工艺参数优化  致密度  硬度    
Abstract: In order to optimize process parameters of selective laser melted of Fe-10Cu alloy, density, hardness and microstructure of fabricated samples were investigated based on the calculation of single track temperature field and analysis of melt pool size by ANSYS APDL under different conditions. The results show that the highest relative density and hardness, which are 99.8% and 38.3HRC, were achieved at a laser power of 345.6 W and a scanning speed of 1 000 mm/s for the selective laser melted of Fe-10Cu alloy, under the condition of powder layer thickness of 40 μm and a scanning spacing of 100 μm. The solidification microstructure of the selective laser melted Fe-10Cu alloy displays a single α-Fe phase. The main reason for enhanced hardness of Fe-10Cu alloy is copper supersaturation in α-Fe due to rapid solidification during the selective laser melted process.
Key words:  Fe-10Cu alloy    selective laser melting    process parameter optimization    relative density    hardness
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TG665  
基金资助: 国家自然科学基金(51961017);云南省重点研发计划(202101AS070017)
通讯作者:  *刘美红,昆明理工大学机电工程学院教授、博士研究生导师。1996年昆明理工大学热加工工艺及设备专业本科毕业,2001年昆明理工大学材料加工工程专业硕士毕业,2004年华东理工大学化工过程机械专业博士毕业。目前主要从事多物理场耦合理论研究及应用、流体密封理论研究与应用等工作,发表论文90余篇。13648861980@163.com   
作者简介:  梁梦,2018年6月毕业于潍坊学院,获得工学学士学位。现为昆明理工大学机电工程学院硕士研究生,在刘美红教授的指导下进行研究。目前主要研究领域为金属3D打印。
引用本文:    
梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
LIANG Meng, LI Zhenhua, LIU Meihong, LUO Xinlei, XIE Jingwei. Process Optimization of Selective Laser Melted Fe-10Cu Alloy. Materials Reports, 2023, 37(14): 21110123-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110123  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21110123
1 Pan Q H. Special Casting & Nonferrous Alloy, 1997, 27(1), 1(in Chinese).
潘奇汉. 特种铸造及有色合金, 1997, 27(1), 1.
2 Xie G L, Wang Q S, Mi X J, et al. Materials Science Engineering, 2012, 558, 326.
3 Luo X L, Liu M H, Li Z H, et al. Chinese Journal of Lasers, 2021, 48(14), 52(in Chinese).
罗心磊, 刘美红, 黎振华, 等. 中国激光, 2021, 48(14), 52.
4 Zafari A, Xia K. Additive Manufacturing, 2021, 47, 102270.
5 Zafari A, Xia K. Materials Research Letters, 2021, 9(6), 247.
6 Kim W R, Bang G B, Park J H, et al. Journal of Materials Research and Technology, 2020, 9(6), 12834.
7 Duan C H, He X J, Luo X P. Applie Laser, 2018, 38(5), 748(in Chinese).
段成红, 郝晓杰, 罗翔鹏. 应用激光, 2018, 38(5), 748.
8 Peng G Y. Numerical simulation of temperature and stress field in selective laser melting of titanium alloy. Master’s Thesis, Huazhong University of Science and Technology, China, 2018(in Chinese).
彭刚勇. 激光选区熔化成形钛合金温度场和应力场数值模拟. 硕士学位论文, 华中科技大学, 2018.
9 Chen J W, Xiong F Y, Huang C Y, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(9), 104 (in Chinese).
陈嘉伟, 熊飞宇, 黄辰阳, 等. 中国科学:物理学 力学 天文学, 2020, 50(9), 104.
10 Dai Y T. The research of cast Fe-20%Cu brazing weld ability. Master’s Thesis, Harbin University of Science and Technology, China, 2014(in Chinese).
戴云婷. 铸态Fe-20%Cu钎焊性的可焊性研究. 硕士学位论文, 哈尔滨理工大学, 2014.
11 Cao Y. Study of precipitation of Fe-Cu alloy. Master’s Thesis, Tsinghua University, China, 2011(in Chinese).
曹悦. Fe-Cu合金中Cu析出的研究. 硕士学位论文, 清华大学, 2011.
12 Zhang W X, Shi Y S, Li G G, et al. Applie Laser, 2008, 28(3), 185 (in Chinese).
章文献, 史玉升, 李佳桂, 等. 应用激光, 2008, 28(3), 185.
13 Dai D H, Gu D D, Li Y L, et al. Chinese Journal of Lasers, 2013, 40 (11), 82 (in Chinese).
戴冬华, 顾冬冬, 李雅莉, 等. 中国激光, 2013, 40(11), 82.
14 He T Q. Study on rapid solidification and microstructure of Fe-Cu phase separation alloy. Master’s Thesis, Shandong University, China, 2016(in Chinese).
何统求. Fe-Cu相分离型合金快速凝固及微观组织研究. 硕士学位论文, 山东大学, 2016.
15 Tan T H. Simulation of selective laser melting of heterogeneous materials and design of equipment structure. Master’s Thesis, Beijing Institute of Technology, China, 2015(in Chinese).
谭天汉. 异质材料选区激光熔化的成形过程仿真研究及设备结构设计. 硕士学位论文, 北京理工大学, 2015.
16 Luo C, Qiu J H, Yan Y G, et al. Journal of Materials Processing Technology, 2018, 261, 74.
17 Priyan S B, Jonathan W, Iain T, et al. Additive Manufacturing, 2019, 27, 246.
18 Dong Z C, Liu Y B, Wen W B, et al. Materials (Basel, Switzerland), 2018, 12(1), 1.
19 Su X B, Yang Y Q. Journal of Materials Processing Technology, 2012, 212(10), 2074.
[1] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[2] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[3] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[4] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[5] 段成红, 池瀚林, 罗翔鹏, 宫鹏杰. 激光熔化沉积稀释率对重熔行为与致密度的影响[J]. 材料导报, 2023, 37(6): 21090124-8.
[6] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[7] 陈远豪, 肖黎, 梁昌兴, 罗月婷, 龚恒翔. 基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析[J]. 材料导报, 2023, 37(11): 21120097-6.
[8] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[9] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[10] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[11] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[12] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[13] 龙伟民, 秦建, 路全彬, 刘大双, 吴爱萍. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 21090163-5.
[14] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[15] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed