Process Optimization of Selective Laser Melted Fe-10Cu Alloy
LIANG Meng1, LI Zhenhua2, LIU Meihong1,*, LUO Xinlei1, XIE Jingwei2
1 School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China 2 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
Abstract: In order to optimize process parameters of selective laser melted of Fe-10Cu alloy, density, hardness and microstructure of fabricated samples were investigated based on the calculation of single track temperature field and analysis of melt pool size by ANSYS APDL under different conditions. The results show that the highest relative density and hardness, which are 99.8% and 38.3HRC, were achieved at a laser power of 345.6 W and a scanning speed of 1 000 mm/s for the selective laser melted of Fe-10Cu alloy, under the condition of powder layer thickness of 40 μm and a scanning spacing of 100 μm. The solidification microstructure of the selective laser melted Fe-10Cu alloy displays a single α-Fe phase. The main reason for enhanced hardness of Fe-10Cu alloy is copper supersaturation in α-Fe due to rapid solidification during the selective laser melted process.
1 Pan Q H. Special Casting & Nonferrous Alloy, 1997, 27(1), 1(in Chinese). 潘奇汉. 特种铸造及有色合金, 1997, 27(1), 1. 2 Xie G L, Wang Q S, Mi X J, et al. Materials Science Engineering, 2012, 558, 326. 3 Luo X L, Liu M H, Li Z H, et al. Chinese Journal of Lasers, 2021, 48(14), 52(in Chinese). 罗心磊, 刘美红, 黎振华, 等. 中国激光, 2021, 48(14), 52. 4 Zafari A, Xia K. Additive Manufacturing, 2021, 47, 102270. 5 Zafari A, Xia K. Materials Research Letters, 2021, 9(6), 247. 6 Kim W R, Bang G B, Park J H, et al. Journal of Materials Research and Technology, 2020, 9(6), 12834. 7 Duan C H, He X J, Luo X P. Applie Laser, 2018, 38(5), 748(in Chinese). 段成红, 郝晓杰, 罗翔鹏. 应用激光, 2018, 38(5), 748. 8 Peng G Y. Numerical simulation of temperature and stress field in selective laser melting of titanium alloy. Master’s Thesis, Huazhong University of Science and Technology, China, 2018(in Chinese). 彭刚勇. 激光选区熔化成形钛合金温度场和应力场数值模拟. 硕士学位论文, 华中科技大学, 2018. 9 Chen J W, Xiong F Y, Huang C Y, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(9), 104 (in Chinese). 陈嘉伟, 熊飞宇, 黄辰阳, 等. 中国科学:物理学 力学 天文学, 2020, 50(9), 104. 10 Dai Y T. The research of cast Fe-20%Cu brazing weld ability. Master’s Thesis, Harbin University of Science and Technology, China, 2014(in Chinese). 戴云婷. 铸态Fe-20%Cu钎焊性的可焊性研究. 硕士学位论文, 哈尔滨理工大学, 2014. 11 Cao Y. Study of precipitation of Fe-Cu alloy. Master’s Thesis, Tsinghua University, China, 2011(in Chinese). 曹悦. Fe-Cu合金中Cu析出的研究. 硕士学位论文, 清华大学, 2011. 12 Zhang W X, Shi Y S, Li G G, et al. Applie Laser, 2008, 28(3), 185 (in Chinese). 章文献, 史玉升, 李佳桂, 等. 应用激光, 2008, 28(3), 185. 13 Dai D H, Gu D D, Li Y L, et al. Chinese Journal of Lasers, 2013, 40 (11), 82 (in Chinese). 戴冬华, 顾冬冬, 李雅莉, 等. 中国激光, 2013, 40(11), 82. 14 He T Q. Study on rapid solidification and microstructure of Fe-Cu phase separation alloy. Master’s Thesis, Shandong University, China, 2016(in Chinese). 何统求. Fe-Cu相分离型合金快速凝固及微观组织研究. 硕士学位论文, 山东大学, 2016. 15 Tan T H. Simulation of selective laser melting of heterogeneous materials and design of equipment structure. Master’s Thesis, Beijing Institute of Technology, China, 2015(in Chinese). 谭天汉. 异质材料选区激光熔化的成形过程仿真研究及设备结构设计. 硕士学位论文, 北京理工大学, 2015. 16 Luo C, Qiu J H, Yan Y G, et al. Journal of Materials Processing Technology, 2018, 261, 74. 17 Priyan S B, Jonathan W, Iain T, et al. Additive Manufacturing, 2019, 27, 246. 18 Dong Z C, Liu Y B, Wen W B, et al. Materials (Basel, Switzerland), 2018, 12(1), 1. 19 Su X B, Yang Y Q. Journal of Materials Processing Technology, 2012, 212(10), 2074.