Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20090128-10    https://doi.org/10.11896/cldb.20090128
  无机非金属及其复合材料 |
连铸用铝碳耐火材料微结构调控研究进展
王玉龙, 王周福*, 王玺堂, 刘浩, 马妍
武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Research Progress of Microstructural Regulation of Al2O3-C Refractories for Continuous-casting
WANG Yulong, WANG Zhoufu*, WANG Xitang, LIU Hao, MA Yan
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 4893KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝碳耐火材料是连铸高温功能部件的常用材料之一,但随着钢铁连铸技术的不断发展,传统材料已不能满足要求。因此研究者常通过对原料的设计和工艺参数的优化使耐火材料在一定温度下具有特定的碳质原料自身结构、衍生碳结构和原位生成陶瓷相结构,即通过微结构调控的方法使材料具备良好的力学性能和抗热震性能,从而使铝碳功能部件适应连铸技术的发展需要。
铝碳耐火材料的碳质原料结构按照特征可分为宏观片状、蠕虫状、纳米球状、管状等众多类型。研究表明,虽然具体机制不同,但这些特殊结构的存在通常对材料抗热震性能的提升有一定积极作用。衍生碳结构根据产生途径可分为残留的碳原子聚集体和气相沉积而成的新碳结构。对于酚醛树脂产生的碳原子聚集体,其本身难以石墨化,因此研究主要集中在催化石墨化方向。对于气相沉积碳,因为其生成常需要催化剂,所以研究主要集中在催化剂的催化机理及其对沉积碳结构的调控方向。而研究亦发现石墨化碳和气相沉积碳的存在往往有利于材料力学性能和抗热震性能的提升。原位生成陶瓷相结构依据控制因素可分为遗传控制和条件控制两类。前者结构与反应物原结构类似,受限制较大。而后者结构受工艺条件的影响更显著,更满足微结构调控的需要。一般认为,各原位陶瓷相的存在均与力学性能的提升联系紧密。而材料的力学性能及抗热震性能除了受到微结构形态特性影响外,还受到结构的物相特性及其分布等因素的影响。因此,必须采用合适的原料和工艺手段对特定微结构的形态、物相和分布进行整体调控以确保材料性能的提升。
本文归纳了连铸用铝碳耐火材料中微结构调控的研究进展,分别对碳质原料自身结构、衍生碳结构、原位生成陶瓷相结构以及影响材料力学等性能的其他因素等进行了介绍,分析了目前研究的不足并展望了未来的研究方向,以期为高性能连铸用铝碳耐火材料的设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉龙
王周福
王玺堂
刘浩
马妍
关键词:  连铸用铝碳耐火材料  微结构调控  原料设计  工艺参数优化  高温功能部件    
Abstract: Al2O3-C refractories are commonly used materials for high-temperature functional components for continuous-casting, but the traditional ones can no longer meet the developing requirements of steel continuous-casting technology. Therefore, researchers always design the raw materials and optimize process parameters to obtain specific carbonaceous raw material structures, derived carbon structures and in-situ ceramic structures in the refractories at a certain temperature. Through the microstructural regulation, the materials can have good mechanical properties and thermal shock resistance, and then the Al2O3-C functional components can adapt to the development of continuous-casting technology.
According to the characteristics, there are many kinds of carbonaceous raw material structures for Al2O3-C refractories, such as macroscopically flaky, vermicular, nano spherical, tubular and so on. The results show that although the specific mechanisms are different, the existence of these special structures usually plays a positive role in improving the thermal shock resistance of the materials. According to the deriving process,the derived carbon structures can be divided into residual carbon clusters and new carbon structures formed by vapor deposition. For the carbon clusters generated from phenolic resin, graphitization is difficult. Therefore, the researches in this field mainly focus on catalytic graphitization. For the vapor deposited carbon, the catalyst is often needed for its formation. Therefore, the researches mainly focus on the catalytic mechanisms and the control of the deposited carbon structures. It is also found that the presence of graphitized carbon and vapor deposited carbon is beneficial to the improvement of mechanical properties and thermal shock resistance of materials. According to the control factors, the in-situ ceramic structures can be divided into genetic control and condition control ones. The former structures are similar to the original structures of the reactants, so their morphologies are limited. The latter structures are affected by the process conditions more obviously, which meets the needs of microstructural regulation much more. It is generally believed that the formation of in-situ ceramic structures is closely related to the improvement of mecha-nical properties of materials. The mechanical properties and thermal shock resistance of materials are affected not only by the morphologies of microstructures, but also by the phase characteristics and distributions. Therefore, it is necessary to overall control the morphologies, phases and distributions of the specific microstructures by using appropriate raw materials and process methods to ensure the improvement of material properties.
In this paper, the research progress of microstructural regulation of Al2O3-C refractories for continuous-casting is summarized. The carbonaceous raw materials structures, derived carbon structures, in-situ ceramic structures and other factors affecting the mechanical and other properties of materials are introduced. The shortcomings of current researches are analyzed and the future research direction is prospected in order to provide reference for the design of high-performance Al2O3-C refractories for continuous-casting.
Key words:  Al2O3-C refractories for continuous-casting    microstructural regulation    raw materials design    process parameters optimization    high-temperature functional component
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TQ175.71  
基金资助: 国家自然科学基金(U20A20239;51672195)
通讯作者:  * 王周福,武汉科技大学教授、博士研究生导师。于2007—2008年到英国谢菲尔德大学材料研究所进行访问、合作研究。在国内外学术期刊上发表论文80余篇,申请国家发明专利41项,其中授权22项。其团队主要研究方向包括:高技术陶瓷粉体、耐火材料微结构设计与性能调控、冶炼新技术用耐火材料、先进隔热材料等。主持完成科研项目40多项,包括国家“863”项目、国家科技支撑计划等。获国家科技进步二等奖一项。whwangzf@126.com   
作者简介:  王玉龙,2014年6月毕业于武汉科技大学,获得理学学士学位。现为武汉科技大学省部共建耐火材料与冶金国家重点实验室博士研究生,在王周福教授的指导下进行研究。目前主要研究领域为连铸用铝碳耐火材料的增强。
引用本文:    
王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
WANG Yulong, WANG Zhoufu, WANG Xitang, LIU Hao, MA Yan. Research Progress of Microstructural Regulation of Al2O3-C Refractories for Continuous-casting. Materials Reports, 2023, 37(1): 20090128-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090128  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20090128
1 Ma B Y, Yu J K. Transactions of Nonferrous Metals Society of China, 2007, 17(5), 996.
2 Ma B Y, Li Y, Zhu Q, et al. Refractories and Industrial Ceramics, 2015, 56(1), 26.
3 Pilli V, Sarkar R. Journal of Alloys and Compounds, 2019, 781, 149.
4 Pilli V, Sarkar R. Journal of Alloys and Compounds, 2018, 735, 1730.
5 Liao N, Li Y W, Sang S B, et al. Refractories, 2015, 49(1), 6(in Chinese).
廖宁, 李亚伟, 桑绍柏, 等. 耐火材料, 2015, 49(1), 6.
6 Fan H B, Li Y W, Sang S B. Materials Science and Engineering A, 2011, 528(7-8), 3177.
7 He S M, Han B Q, Wei Y W, et al. Refractories, 2019, 53(3), 217(in Chinese).
何思梦, 韩兵强, 魏耀武, 等. 耐火材料, 2019, 53(3), 217.
8 Liang X, Li Y W, Zhang Y, et al. Journal of the Chinese Ceramic Society, 2014, 42(3), 357(in Chinese).
梁雄, 李亚伟, 张雨, 等. 硅酸盐学报, 2014, 42(3), 357.
9 Wang H, Li Y W, Zhu T B, et al. Ceramics International, 2014, 40(7), 11139.
10 Wang Q H, Li Y W, Luo M, et al. Ceramics International, 2014, 40(1), 163.
11 Yu S Z, Liao N, Li Y W, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(1), 363(in Chinese).
郁书中, 廖宁, 李亚伟, 等. 硅酸盐通报, 2018, 37(1), 363.
12 Wang Q H, Li Y W, Sang S B, et al. Journal of Alloys and Compounds, 2015, 645, 388.
13 Behera S K, Mishra B. Ceramics International, 2015, 41(3), 4254.
14 Liao N, Li Y W, Sang S B, et al. Journal of the Chinese Ceramic Society, 2014, 42(12), 1591(in Chinese).
廖宁, 李亚伟, 桑绍柏, 等. 硅酸盐学报, 2014, 42(12), 1591.
15 Liu J, Li Y X, Lin Z J, et al. Journal of Wuhan University of Science and Technology, 2015, 38(6), 413(in Chinese).
刘俊, 李云霞, 林正杰, 等. 武汉科技大学学报, 2015, 38(6), 413.
16 Liao N, Li Y W, Jin S L, et al. Journal of the European Ceramic Society, 2016, 36(3), 867.
17 Li Y W, Liao N, Sang S B, et al. Journal of Ceramic Science and Technology, 2015, 6(3), 207.
18 Liao N, Li Y W, Wang Q H, et al. Ceramics International, 2017, 43(16), 14380.
19 Liao N, Li Y W, Jin S L, et al. Materials Science and Engineering A, 2017, 698, 80.
20 Luo M, Li Y W, Jin S L, et al. Ceramics International, 2013, 39(5), 4831.
21 Luo M, Li Y W, Jin S L, et al. Materials Science and Engineering A, 2012, 548, 134.
22 Liang F, Li N, Liu B K, et al. New Carbon Materials, 2014, 29(2), 118(in Chinese).
梁峰, 李楠, 刘百宽, 等. 新型炭材料, 2014, 29(2), 118.
23 Liang F, Li N, Liu B K, et al. Metallurgical and Materials Transactions B, 2016, 47(3), 1661.
24 Li Y W, Shan J B, Liao N, et al. Journal of the European Ceramic Society, 2018, 38(9), 3379.
25 Xu X F, Li Y W, Wang Q H, et al. Journal of Synthetic Crystals, 2016, 45(9), 2257(in Chinese).
徐小峰, 李亚伟, 王庆虎, 等. 人工晶体学报, 2016, 45(9), 2257.
26 Wang Q H, Li Y W, Jin S L, et al. Materials Science and Engineering A, 2018, 709, 160.
27 Zhang H, Li N, Yan W. Bulletin of the Chinese Ceramic Society, 2017, 36(6), 2011(in Chinese).
张红, 李楠, 鄢文. 硅酸盐通报, 2017, 36(6), 2011.
28 Zhang H, Li N, Yan W. Refractories, 2014, 48(2), 106(in Chinese).
张红, 李楠, 鄢文. 耐火材料, 2014, 48(2), 106.
29 Xu X, Li Y, Wang Q, et al. Journal of Ceramic Science and Technology, 2017, 8(4), 455.
30 Peigney A, Garcia F L, Estournès C, et al. Carbon, 2010, 48(7), 1952.
31 Wei T, Fan Z J, Luo G H, et al. Materials Research Bulletin, 2008, 43(10), 2806.
32 Bitencourt C S, Luz A P, Pagliosa C, et al. Ceramics International, 2015, 41(10), 13320.
33 Luz A P, Renda C G, Lucas A A, et al. Ceramics International, 2017, 43(11), 8171.
34 Stein V, Aneziris C G. Journal of Ceramic Science and Technology, 2014, 5(2), 115.
35 Zhu B Q, Li X C, Chen P A, et al. Refractories, 2017, 51(3), 161(in Chinese).
朱伯铨, 李享成, 陈平安, 等. 耐火材料, 2017, 51(3), 161.
36 Wang H, Li Y W, Sang S B, et al. Journal of Synthetic Crystals, 2014, 43(7), 1815(in Chinese).
王恒, 李亚伟, 桑绍柏, 等. 人工晶体学报, 2014, 43(7), 1815.
37 Wang H, Li Y W, Sang S B, et al. Ceramics International, 2014, 40(10), 15783.
38 Luo M, Li Y W, Sang S B, et al. Materials Science and Engineering A, 2012, 558, 533.
39 Liu G F, Li Y W, Liao N, et al. Journal of the Chinese Ceramic Society, 2017, 45(9), 1340(in Chinese).
刘耕夫, 李亚伟, 廖宁, 等. 硅酸盐学报, 2017, 45(9), 1340.
40 Guo W, An S L. Bulletin of the Chinese Ceramic Society, 2007, 26(5), 1011(in Chinese).
郭巍, 安胜利. 硅酸盐通报, 2007, 26(5), 1011.
41 Yang W G, Yang F L, Li H X, et al. Refractories, 2016, 50(5), 325(in Chinese).
杨文刚, 杨凤玲, 李红霞, 等. 耐火材料, 2016, 50(5), 325.
42 Bost N, Ammar M R, Bouchetou M L, et al. Journal of the European Ceramic Society, 2016, 36(8), 2133.
43 Yan G S, Li H J, Hao Z B. New Carbon Materials, 2002, 17(3), 43(in Chinese).
闫桂沈, 李贺军, 郝志彪. 新型炭材料, 2002, 17(3), 43.
44 Zhao T J, Zhui Y A, Li P, et al. Chinese Journal of Catalysis, 2004, 25(10), 829(in Chinese).
赵铁均, 朱贻安, 李平, 等. 催化学报, 2004, 25(10), 829.
45 He C N, Zhao N Q, Shi C S, et al. Materials Chemistry and Physics, 2007, 97(1), 109.
46 Zhao M, Song H H, Lian W T, et al. Journal of Inorganic Materials, 2007, 22(4), 599(in Chinese).
赵木, 宋怀河, 连文涛, 等. 无机材料学报, 2007, 22(4), 599.
47 Liao N, Li Y W, Sang S B. Journal of the Chinese Ceramic Society, 2015, 43(3), 251(in Chinese).
廖宁, 李亚伟, 桑绍柏. 硅酸盐学报, 2015, 43(3), 251.
48 Liao N, Li Y W, Sang S B. Journal of the Chinese Ceramic Society, 2017, 45(3), 433(in Chinese).
廖宁, 李亚伟, 桑绍柏. 硅酸盐学报, 2017, 45(3), 433.
49 Zhao F, Zhu B Q, Li X C, et al. Refractories, 2013, 47(2), 115(in Chinese).
赵飞, 朱伯铨, 李享成, 等. 耐火材料, 2013, 47(2), 115.
50 Zhu B Q, Zhu Y N, Li X C, et al. Ceramics International, 2013, 39(6), 6069.
51 Liu X H, Zhong X C. Refractories, 2013, 47(1), 6(in Chinese).
刘新红, 钟香崇. 耐火材料, 2013, 47(1), 6.
52 Roungos V, Aneziris C G, Berek H. Advanced Engineering Materials, 2012, 14(4), 255.
53 Mertke A, Aneziris C G. Ceramics International, 2015, 41(1), 1541.
54 Brachhold N, Fruhstorfer J, Mertke A, et al. Journal of Ceramic Science and Technology, 2016, 7(2), 209.
55 Guo D Q, Li X C, Chen P A, et al. Ceramics International, 2016, 42(16), 19071.
56 Yin C F, Li X C, Chen P A, et al. Ceramics International, 2019, 45(6), 7427.
57 Guo D Q, Li X C, Chen P A, et al. Journal of the Chinese Ceramic Society, 2016, 44(6), 884(in Chinese).
郭定桥, 李享成, 陈平安, 等. 硅酸盐学报, 2016, 44(6), 884.
58 Yin C F, Zhang J, Li X C, et al. Ceramics International, 2019, 45(14), 17298.
59 Zhang J, Li X C, Gong W, et al. Journal of the European Ceramic Society, 2019, 39(8), 2739.
60 Roungos V, Aneziris C G. Ceramics International, 2012, 38(2), 919.
61 Wu Y W, Zhuang H R, Wu F Y, et al. Journal of Materials Research, 1998, 13(1), 166.
62 Deng X, Li X C, Zhu B Q, et al. Ceramics International, 2015, 41(10), 14376.
63 Khezrabadi M N, Javadpour J, Rezaie H R, et al. Journal of Materials Science, 2006, 41(10), 3027.
64 Pilli V, Sarkar R. International Journal of Applied Ceramic Technology, 2020, 17(2), 637.
65 Atzenhofer C, Gschiel S, Harmuth H. Journal of the European Ceramic Society, 2017, 37(4), 1805.
66 Liu G Q, Wang J X, Yang B, et al. Refractories, 2005, 39(1), 26(in Chinese).
刘国齐, 王金相, 杨彬, 等. 耐火材料, 2005, 39(1), 26.
67 Wang H, Shi G, Xia Y, et al. Refractories, 2006, 40(4), 252(in Chinese).
王晗, 石干, 夏熠, 等. 耐火材料, 2006, 40(4), 252.
[1] 成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
[2] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed