Abstract: Al2O3-C refractories are commonly used materials for high-temperature functional components for continuous-casting, but the traditional ones can no longer meet the developing requirements of steel continuous-casting technology. Therefore, researchers always design the raw materials and optimize process parameters to obtain specific carbonaceous raw material structures, derived carbon structures and in-situ ceramic structures in the refractories at a certain temperature. Through the microstructural regulation, the materials can have good mechanical properties and thermal shock resistance, and then the Al2O3-C functional components can adapt to the development of continuous-casting technology. According to the characteristics, there are many kinds of carbonaceous raw material structures for Al2O3-C refractories, such as macroscopically flaky, vermicular, nano spherical, tubular and so on. The results show that although the specific mechanisms are different, the existence of these special structures usually plays a positive role in improving the thermal shock resistance of the materials. According to the deriving process,the derived carbon structures can be divided into residual carbon clusters and new carbon structures formed by vapor deposition. For the carbon clusters generated from phenolic resin, graphitization is difficult. Therefore, the researches in this field mainly focus on catalytic graphitization. For the vapor deposited carbon, the catalyst is often needed for its formation. Therefore, the researches mainly focus on the catalytic mechanisms and the control of the deposited carbon structures. It is also found that the presence of graphitized carbon and vapor deposited carbon is beneficial to the improvement of mechanical properties and thermal shock resistance of materials. According to the control factors, the in-situ ceramic structures can be divided into genetic control and condition control ones. The former structures are similar to the original structures of the reactants, so their morphologies are limited. The latter structures are affected by the process conditions more obviously, which meets the needs of microstructural regulation much more. It is generally believed that the formation of in-situ ceramic structures is closely related to the improvement of mecha-nical properties of materials. The mechanical properties and thermal shock resistance of materials are affected not only by the morphologies of microstructures, but also by the phase characteristics and distributions. Therefore, it is necessary to overall control the morphologies, phases and distributions of the specific microstructures by using appropriate raw materials and process methods to ensure the improvement of material properties. In this paper, the research progress of microstructural regulation of Al2O3-C refractories for continuous-casting is summarized. The carbonaceous raw materials structures, derived carbon structures, in-situ ceramic structures and other factors affecting the mechanical and other properties of materials are introduced. The shortcomings of current researches are analyzed and the future research direction is prospected in order to provide reference for the design of high-performance Al2O3-C refractories for continuous-casting.
王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
WANG Yulong, WANG Zhoufu, WANG Xitang, LIU Hao, MA Yan. Research Progress of Microstructural Regulation of Al2O3-C Refractories for Continuous-casting. Materials Reports, 2023, 37(1): 20090128-10.
1 Ma B Y, Yu J K. Transactions of Nonferrous Metals Society of China, 2007, 17(5), 996. 2 Ma B Y, Li Y, Zhu Q, et al. Refractories and Industrial Ceramics, 2015, 56(1), 26. 3 Pilli V, Sarkar R. Journal of Alloys and Compounds, 2019, 781, 149. 4 Pilli V, Sarkar R. Journal of Alloys and Compounds, 2018, 735, 1730. 5 Liao N, Li Y W, Sang S B, et al. Refractories, 2015, 49(1), 6(in Chinese). 廖宁, 李亚伟, 桑绍柏, 等. 耐火材料, 2015, 49(1), 6. 6 Fan H B, Li Y W, Sang S B. Materials Science and Engineering A, 2011, 528(7-8), 3177. 7 He S M, Han B Q, Wei Y W, et al. Refractories, 2019, 53(3), 217(in Chinese). 何思梦, 韩兵强, 魏耀武, 等. 耐火材料, 2019, 53(3), 217. 8 Liang X, Li Y W, Zhang Y, et al. Journal of the Chinese Ceramic Society, 2014, 42(3), 357(in Chinese). 梁雄, 李亚伟, 张雨, 等. 硅酸盐学报, 2014, 42(3), 357. 9 Wang H, Li Y W, Zhu T B, et al. Ceramics International, 2014, 40(7), 11139. 10 Wang Q H, Li Y W, Luo M, et al. Ceramics International, 2014, 40(1), 163. 11 Yu S Z, Liao N, Li Y W, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(1), 363(in Chinese). 郁书中, 廖宁, 李亚伟, 等. 硅酸盐通报, 2018, 37(1), 363. 12 Wang Q H, Li Y W, Sang S B, et al. Journal of Alloys and Compounds, 2015, 645, 388. 13 Behera S K, Mishra B. Ceramics International, 2015, 41(3), 4254. 14 Liao N, Li Y W, Sang S B, et al. Journal of the Chinese Ceramic Society, 2014, 42(12), 1591(in Chinese). 廖宁, 李亚伟, 桑绍柏, 等. 硅酸盐学报, 2014, 42(12), 1591. 15 Liu J, Li Y X, Lin Z J, et al. Journal of Wuhan University of Science and Technology, 2015, 38(6), 413(in Chinese). 刘俊, 李云霞, 林正杰, 等. 武汉科技大学学报, 2015, 38(6), 413. 16 Liao N, Li Y W, Jin S L, et al. Journal of the European Ceramic Society, 2016, 36(3), 867. 17 Li Y W, Liao N, Sang S B, et al. Journal of Ceramic Science and Technology, 2015, 6(3), 207. 18 Liao N, Li Y W, Wang Q H, et al. Ceramics International, 2017, 43(16), 14380. 19 Liao N, Li Y W, Jin S L, et al. Materials Science and Engineering A, 2017, 698, 80. 20 Luo M, Li Y W, Jin S L, et al. Ceramics International, 2013, 39(5), 4831. 21 Luo M, Li Y W, Jin S L, et al. Materials Science and Engineering A, 2012, 548, 134. 22 Liang F, Li N, Liu B K, et al. New Carbon Materials, 2014, 29(2), 118(in Chinese). 梁峰, 李楠, 刘百宽, 等. 新型炭材料, 2014, 29(2), 118. 23 Liang F, Li N, Liu B K, et al. Metallurgical and Materials Transactions B, 2016, 47(3), 1661. 24 Li Y W, Shan J B, Liao N, et al. Journal of the European Ceramic Society, 2018, 38(9), 3379. 25 Xu X F, Li Y W, Wang Q H, et al. Journal of Synthetic Crystals, 2016, 45(9), 2257(in Chinese). 徐小峰, 李亚伟, 王庆虎, 等. 人工晶体学报, 2016, 45(9), 2257. 26 Wang Q H, Li Y W, Jin S L, et al. Materials Science and Engineering A, 2018, 709, 160. 27 Zhang H, Li N, Yan W. Bulletin of the Chinese Ceramic Society, 2017, 36(6), 2011(in Chinese). 张红, 李楠, 鄢文. 硅酸盐通报, 2017, 36(6), 2011. 28 Zhang H, Li N, Yan W. Refractories, 2014, 48(2), 106(in Chinese). 张红, 李楠, 鄢文. 耐火材料, 2014, 48(2), 106. 29 Xu X, Li Y, Wang Q, et al. Journal of Ceramic Science and Technology, 2017, 8(4), 455. 30 Peigney A, Garcia F L, Estournès C, et al. Carbon, 2010, 48(7), 1952. 31 Wei T, Fan Z J, Luo G H, et al. Materials Research Bulletin, 2008, 43(10), 2806. 32 Bitencourt C S, Luz A P, Pagliosa C, et al. Ceramics International, 2015, 41(10), 13320. 33 Luz A P, Renda C G, Lucas A A, et al. Ceramics International, 2017, 43(11), 8171. 34 Stein V, Aneziris C G. Journal of Ceramic Science and Technology, 2014, 5(2), 115. 35 Zhu B Q, Li X C, Chen P A, et al. Refractories, 2017, 51(3), 161(in Chinese). 朱伯铨, 李享成, 陈平安, 等. 耐火材料, 2017, 51(3), 161. 36 Wang H, Li Y W, Sang S B, et al. Journal of Synthetic Crystals, 2014, 43(7), 1815(in Chinese). 王恒, 李亚伟, 桑绍柏, 等. 人工晶体学报, 2014, 43(7), 1815. 37 Wang H, Li Y W, Sang S B, et al. Ceramics International, 2014, 40(10), 15783. 38 Luo M, Li Y W, Sang S B, et al. Materials Science and Engineering A, 2012, 558, 533. 39 Liu G F, Li Y W, Liao N, et al. Journal of the Chinese Ceramic Society, 2017, 45(9), 1340(in Chinese). 刘耕夫, 李亚伟, 廖宁, 等. 硅酸盐学报, 2017, 45(9), 1340. 40 Guo W, An S L. Bulletin of the Chinese Ceramic Society, 2007, 26(5), 1011(in Chinese). 郭巍, 安胜利. 硅酸盐通报, 2007, 26(5), 1011. 41 Yang W G, Yang F L, Li H X, et al. Refractories, 2016, 50(5), 325(in Chinese). 杨文刚, 杨凤玲, 李红霞, 等. 耐火材料, 2016, 50(5), 325. 42 Bost N, Ammar M R, Bouchetou M L, et al. Journal of the European Ceramic Society, 2016, 36(8), 2133. 43 Yan G S, Li H J, Hao Z B. New Carbon Materials, 2002, 17(3), 43(in Chinese). 闫桂沈, 李贺军, 郝志彪. 新型炭材料, 2002, 17(3), 43. 44 Zhao T J, Zhui Y A, Li P, et al. Chinese Journal of Catalysis, 2004, 25(10), 829(in Chinese). 赵铁均, 朱贻安, 李平, 等. 催化学报, 2004, 25(10), 829. 45 He C N, Zhao N Q, Shi C S, et al. Materials Chemistry and Physics, 2007, 97(1), 109. 46 Zhao M, Song H H, Lian W T, et al. Journal of Inorganic Materials, 2007, 22(4), 599(in Chinese). 赵木, 宋怀河, 连文涛, 等. 无机材料学报, 2007, 22(4), 599. 47 Liao N, Li Y W, Sang S B. Journal of the Chinese Ceramic Society, 2015, 43(3), 251(in Chinese). 廖宁, 李亚伟, 桑绍柏. 硅酸盐学报, 2015, 43(3), 251. 48 Liao N, Li Y W, Sang S B. Journal of the Chinese Ceramic Society, 2017, 45(3), 433(in Chinese). 廖宁, 李亚伟, 桑绍柏. 硅酸盐学报, 2017, 45(3), 433. 49 Zhao F, Zhu B Q, Li X C, et al. Refractories, 2013, 47(2), 115(in Chinese). 赵飞, 朱伯铨, 李享成, 等. 耐火材料, 2013, 47(2), 115. 50 Zhu B Q, Zhu Y N, Li X C, et al. Ceramics International, 2013, 39(6), 6069. 51 Liu X H, Zhong X C. Refractories, 2013, 47(1), 6(in Chinese). 刘新红, 钟香崇. 耐火材料, 2013, 47(1), 6. 52 Roungos V, Aneziris C G, Berek H. Advanced Engineering Materials, 2012, 14(4), 255. 53 Mertke A, Aneziris C G. Ceramics International, 2015, 41(1), 1541. 54 Brachhold N, Fruhstorfer J, Mertke A, et al. Journal of Ceramic Science and Technology, 2016, 7(2), 209. 55 Guo D Q, Li X C, Chen P A, et al. Ceramics International, 2016, 42(16), 19071. 56 Yin C F, Li X C, Chen P A, et al. Ceramics International, 2019, 45(6), 7427. 57 Guo D Q, Li X C, Chen P A, et al. Journal of the Chinese Ceramic Society, 2016, 44(6), 884(in Chinese). 郭定桥, 李享成, 陈平安, 等. 硅酸盐学报, 2016, 44(6), 884. 58 Yin C F, Zhang J, Li X C, et al. Ceramics International, 2019, 45(14), 17298. 59 Zhang J, Li X C, Gong W, et al. Journal of the European Ceramic Society, 2019, 39(8), 2739. 60 Roungos V, Aneziris C G. Ceramics International, 2012, 38(2), 919. 61 Wu Y W, Zhuang H R, Wu F Y, et al. Journal of Materials Research, 1998, 13(1), 166. 62 Deng X, Li X C, Zhu B Q, et al. Ceramics International, 2015, 41(10), 14376. 63 Khezrabadi M N, Javadpour J, Rezaie H R, et al. Journal of Materials Science, 2006, 41(10), 3027. 64 Pilli V, Sarkar R. International Journal of Applied Ceramic Technology, 2020, 17(2), 637. 65 Atzenhofer C, Gschiel S, Harmuth H. Journal of the European Ceramic Society, 2017, 37(4), 1805. 66 Liu G Q, Wang J X, Yang B, et al. Refractories, 2005, 39(1), 26(in Chinese). 刘国齐, 王金相, 杨彬, 等. 耐火材料, 2005, 39(1), 26. 67 Wang H, Shi G, Xia Y, et al. Refractories, 2006, 40(4), 252(in Chinese). 王晗, 石干, 夏熠, 等. 耐火材料, 2006, 40(4), 252.