Please wait a minute...
材料导报  2020, Vol. 34 Issue (22): 22190-22194    https://doi.org/10.11896/cldb.19080178
  高分子与聚合物基复合材料 |
AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化
成烨, 还大军, 李勇, 刘洪全, 周洲
南京航空航天大学材料科学与技术学院,南京 210016
Optimization of Process Parameters for Laser-assisted Filament Winding of AS4D/PEEK Thermoplastic Composites
CHENG Ye, HUAN Dajun, LI Yong, LIU Hongquan, ZHOU Zhou
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 5421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热塑性复合材料缠绕成型过程中,工艺参数的选取对制品的性能有决定性作用。本工作基于热塑性复合材料激光固结自动铺放(LAFP)设备,以碳纤维增强聚醚醚酮(AS4D/PEEK)高性能热塑性复合材料预浸料为原料制备缠绕样品,以层间剪切强度为参数优化目标,根据响应曲面法Box-Behnken Design方法设计了试验,分析了加热区温度、缠绕速度、纤维张力三个工艺参数对层间剪切强度的影响规律,建立了各工艺参数对层间剪切强度的回归模型,并通过方差分析以及实验验证的方法验证了模型的准确性和可靠性。分析表明:响应值随各参数值的增加均表现出先增后减的变化规律,加热区温度和缠绕速度对层间剪切强度的影响显著,纤维张力有一定影响但不显著。最终得到的优化工艺参数组合为:加热区温度436.6 ℃、缠绕速度81.3 mm/s、纤维张力201.9 N,层间剪切强度达到52.8 MPa,该条件下缠绕制品结合强度最高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成烨
还大军
李勇
刘洪全
周洲
关键词:  热塑性复合材料  激光固结缠绕成型  工艺参数优化  层间剪切强度    
Abstract: Process parameters have a significant influence on the quality of winding products made of thermoplastic composites. Based on laser-assisted automated fiber placement (LAFP) equipment for thermoplastic composites, winding samples were made of carbon fiber reinforced pol-yether ether ketone (AS4D/PEEK) high performance thermoplastic composites prepreg. According to response surface methodology, Box-Behnken Design method was used to design experiments. The influence of parameters such as heating zone temperature, winding speed and tension of fiber on inter laminar shear strength were analyzed. The regression model of each process parameter on inter laminar shear strength was established to optimize the inter laminar shear strength of composite rings. The accuracy and reliability of the model were validated by variance analysis (ANVOA) and experiment. The results show that the response value increases first and then decreases with the increase of parameters. Heating zone temperature and winding speed have significant effects on interlaminar shearstrength, while the fiber tension has some effects but not significant. Finally, the optimum process parameters were obtained: heating zone temperature 436.6 ℃, winding speed 81.3 mm/s, tension of fiber 201.9 N. Under the optimum combination of process parameters, winding product has best quality and the interlaminar shear strength is 52.8 MPa.
Key words:  thermoplastic composites    laser-assisted winding process    parameter optimization    interlaminar shear strength
               出版日期:  2020-11-25      发布日期:  2020-12-02
ZTFLH:  TB332  
基金资助: “高档数控机床与基础制造装备”科技重大专项(2017ZX04009001)
通讯作者:  huandj@nuaa.edu.cn   
作者简介:  成烨,硕士研究生,2017年9月至今就读于南京航空航天大学。研究方向为热塑性复合材料激光辅助高预应力制造。还大军,南京航空航天大学讲师,硕士研究生导师。主要从事高性能热塑性复合材料自动化成形技术研究。主持和参与国家重大项目10余项,发表学术论文20余篇。
引用本文:    
成烨, 还大军, 李勇, 刘洪全, 周洲. AS4D/PEEK热塑性复合材料激光固结缠绕工艺参数优化[J]. 材料导报, 2020, 34(22): 22190-22194.
CHENG Ye, HUAN Dajun, LI Yong, LIU Hongquan, ZHOU Zhou. Optimization of Process Parameters for Laser-assisted Filament Winding of AS4D/PEEK Thermoplastic Composites. Materials Reports, 2020, 34(22): 22190-22194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080178  或          http://www.mater-rep.com/CN/Y2020/V34/I22/22190
1 Chen X B. Handbook of polymer matrix composites, Chemical Industry Press, China, 2004(in Chinese).陈祥宝.高性能树脂基体, 化学工业出版社, 2004.2 Takahashi K, Kitade S, Morita H.Advanced Composite Materials, 2002, 11(1),40.3 Binder A, Schneider T, Klohr M.IEEE Transactions on Industry Applications, 2006, 42(4),1031.4 Yu T M, Gao H B, Wang B M,et al. Engineering Plastics Application, 2018, 46(4),139(in Chinese).于天淼, 高华兵, 王宝铭, 等. 工程塑料应用, 2018,46(4),139.5 Ageorges C, Ye L, Hou M.Composites Part A (Applied Science and Manufacturing), 2001, 32(6),839.6 Sun Y B, Li H F, Zhang B M. Aeronautical Science & Technology, 2016, 27(5),1(in Chinese).孙银宝,李宏福,张博明.航空科学技术, 2016, 27(5),1.7 Wang X G, Yu Y, Li S M, et al. Fiber Composites, 2011(2),44(in Chinese).王兴刚, 于洋, 李树茂, 等.纤维复合材料, 2011(2),44.8 Carpenter C E, Colton J S.Polymer Composites, 1994, 15(1),55.9 Qureshi Z, Swait T, Scaife R, et al.Composites Part B: Engineering, 2014, 66,255.10 Ray D, Comer A J, Lyons J, et al.Journal of Applied Polymer Science, 2015, 132(11),41643.11 Henninger F, Hoffmann J, Friedrich K.Composites. Part A: Applied Science and Manufacturing, 2002, 33(12),1684.12 Wu Y P, Wen L W, Yu R M. Aeronautical Manufacturing Technology, 2018, 61(18),82(in Chinese).吴瑶平, 文立伟, 於仁明.航空制造技术, 2018, 61(18),82.13 Aized T, Shirinzadeh B.The International Journal of Advanced Manufacturing Technology, 2011, 55(1-4),393.14 Choe C R, Lee K H.Polymer Engineering & Science, 1989, 29(12), 801.15 Pitchumani R, Ranganathan S, Don R C, et al.International Journal of Heat and Mass Transfer, 1996, 39(9),1883.
[1] 龚明, 张代军, 刘燕峰, 张嘉阳, 李军, 陈祥宝. 纤维增强热塑性复合材料原位聚合成型技术研究进展[J]. 材料导报, 2020, 34(21): 21180-21187.
[2] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[3] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed