Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 894-900    https://doi.org/10.11896/cldb.201905022
  高分子与聚合物基复合材料 |
基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能
曹忠亮1,2, 富宏亚1, 付云忠1, 邵忠喜1
1 哈尔滨工业大学机电工程学院,哈尔滨 150001;
2 齐齐哈尔大学机电工程学院,齐齐哈尔 161001
A Review of Robotic Prepreg Placement and In-situ Consolidation forManufacturing Fiber-reinforced Thermoplastic Composites: Heat Transfer Behavior and Interlaminar Properties
CAO Zhongliang1,2, FU Hongya1, FU Yunzhong1, SHAO Zhongxi1
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001;
2 School of Mechatronics Engineering, Qiqihar University, Qiqihar 161001
下载:  全 文 ( PDF ) ( 1612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维增强复合材料具有轻质、高强、性能可设计等特性,在减重、抗疲劳、耐腐蚀、维修性等方面明显优于传统金属材料,在航空航天、交通运输、国防等领域的应用越来越广泛,其中热塑性复合材料具有高韧性、高冲击性、无限储存周期、可回收利用等众多优点。复合材料自动铺放技术成型效率高、自动化程度高,特别适用于大尺寸和复杂构件的制造。同时,热塑性复合材料原位固化技术不断发展和进步,生产效率显著提高,生产成本降低,构件质量得以提升。因此,基于自动铺放技术的热塑性复合材料原位固化成型将会是未来大飞机主承力部件的重要成型方法。
然而,热塑性复合材料铺放成型过程经历高温制造,伴随着热力学耦合等相关问题。对于原位固化方法,热源的选择颇为关键,将直接影响铺放成型的效果和效率。在铺放成型过程中,热塑性聚合物分子链受热发生流动,宏观上则是热塑性树脂发生从固态到熔融态再到固态的物理变化。整个成型过程持续时间较短,但又涉及一系列的物理变化,是一个非常复杂的过程,目前已成为国际上高性能热塑性复合材料的研究热点之一。
热塑性复合材料纤维铺放成型常用的热源主要包括热空气、激光、超声波、电子束等。其中针对热空气的研究较早,建立了铺层内的热传导理论模型,就铺层基层中温度场展开了许多工作并取得了相应的成果。对激光加热成型获得的铺放构件的诸多研究表明,激光作为热源相比于热空气可以大幅提升层间性能。此外,学者们还提出了不同的理论模型来预测最终的熔合强度,但测试结果显示铺放构件的力学性能不及热压罐固化的构件,进一步的理论和实践探索仍然很有必要。
本文主要聚焦基于预浸料自动铺放技术的热塑性复合材料原位固化成型工艺,从工艺过程中的热传导行为、铺层的性能指标两方面介绍或探讨了铺放工艺过程、热传递模型、原位固化热源、铺层间紧密接触度、熔合度及熔合强度等的研究现状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹忠亮
富宏亚
付云忠
邵忠喜
关键词:  纤维增强热塑性复合材料  纤维预浸料  铺放  原位固化成型  热传递模型  热传导行为  层间性能    
Abstract: Light weight, high strength and designable performance make fiber-reinforced composites far superior to metallic materials in weight reduction, fatigue resistance, corrosion resistance, maintainability, and increasingly prevalent in aerospace, transportation, national defense and other fields. Thermoplastic composites have a great deal of advantages such as high toughness, high impact, unlimited storage cycle and recyclability. The robotic placement technology is especially suitable for forming large-size and complicated composite components by virtue of high forming efficiency and high automation. On the other hand, the rapid development of in-situ consolidation technology for thermoplastic composites has led to increased production efficiency, reduced production cost, and significantly improved product quality. Hence the robotic prepreg placement and in-situ consolidation has the potential to become an advanced and promising technique for manufacturing main load-bearing parts of large aircraft in the future.
However, as a high-temperature manufacturing process, the placement-consolidation of thermoplastic composite involves some related problems such as thermodynamic coupling. The adoption of heat source is a crucial point for in-situ consolidation, which directly affects the quality and placement efficiency. The heat input to the system can cause molecular chain flow, and the attendant macroscopic change, during the placement-consolidation process, manifests as the transformation of thermoplastic polymer from solid state to molten state and then again to solid state. The whole process is short-duration but quite complicated and associated with a series of physical changes, and has become one of the global hotspots in the field of high-performance thermoplastic composites.
The commonly used heating sources in the placement-consolidation of thermoplastic composites mainly include hot air, laser, ultrasonic wave, electron beam, etc. Among them, hot air heating has long been studied with a well-established theoretical interlaminar heat transfer model, and considerable and fruitful efforts have been made focusing on the temperature field of the mat layer. At present, the majority of foreign researchers are dedicated to laser heating, and sufficient results have proved that laser has a significant superiority in product’s interlaminar properties against hot air as auxiliary heat source. In addition, researchers have proposed various theoretical models for the prediction of the final fusion strength, but actually the placement-consolidation derived components have inferior mechanical properties to the autoclave cured ones according to the measurements, demonstrating the necessity for further theoretical and practical exploration.
The present review is mainly concerned with the technology of robotic prepreg placement and in-situ consolidation with respect of thermoplastic composites manufacturing. It renders a detailed introduction and discussion, from the perspectives of heat transfer behavior and product’s interlaminar properties, over the research progress in various aspects of this emerging technology, such as the placement process, the heat transfer model, the heat source for in-situ consolidation, the degree of intimate contact, the degree of healing and the interlaminar bonding, etc.
Key words:  fiber-reinforced thermoplastic composite    fiber prepreg    placement    in-situ consolidation    heat transfer model    heat transfer beha-vior    interlaminar property
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51705266);国家数控专项支持项目(2014ZX04001091);黑龙江省自然科学基金(QC2018072)
作者简介:  曹忠亮,2010年7月毕业于哈尔滨工业大学,获得硕士学位,同年进入齐齐哈尔大学机电工程学院工作。目前主要研究领域为复合材料铺放成型工艺、变角度轨迹规划等。邵忠喜,哈尔滨工业大学机电工程学院副研究员,在2006年取得佳木斯大学机械工程专业硕士学位,在2013年取得哈尔滨工业大学机械工程专业博士学位。shaozhongxi78@163.com
引用本文:    
曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
CAO Zhongliang, FU Hongya, FU Yunzhong, SHAO Zhongxi. A Review of Robotic Prepreg Placement and In-situ Consolidation forManufacturing Fiber-reinforced Thermoplastic Composites: Heat Transfer Behavior and Interlaminar Properties. Materials Reports, 2019, 33(5): 894-900.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905022  或          http://www.mater-rep.com/CN/Y2019/V33/I5/894
1 Du S Y. Acta Materiae Compositae Sinica,2007(1),12(in Chinese).
杜善义.复合材料学报,2007(1),12.
2 Wen L W, Xiao J, Wang X F, et al. Journal of Nanjing University of Aeronautics & Astronautics,2015,47(5),637(in Chinese).
文立伟,肖军,王显峰,等.南京航空航天大学,2015,47(5),637.
3 Zhang X H, Duan Y G, Ge Y M, et al. Journal of Mechanical Enginee-ring,2014,11(50),37(in Chinese).
张小辉,段玉岗,葛衍明,等.机械工程学报,2014,11(50),37.
4 Morey B. Manufacturing Engineering,2008,4,12.
5 Lukaszewicz D, Ward C, Potter K. Composites Part B,2012,43(3),997.
6 Lionetto F, Dell’Anna R, Montagna, et al. Composites Part A,2016,82,119.
7 Fan Y Q, Zhang L H. Acta Aeronoutica et Astronautica Sinica,2009(3),534(in Chinese).
范玉青,张丽华.航空学报,2009(3),534.
8 Li Y, Xiao J. Fiber Composites,2002,32(3),39(in Chinese).
李勇,肖军.纤维复合材料,2002,32(3),39.
9 Sun Y B, Li H F, Zhang B M. Aeronautical Science & Technology,2016,18(5),7(in Chinese).
孙银宝,李宏福,张博明.航空科学技术,2016,18(5),7.
10 Ji G M, Yin Y H, Zheng Z. China Adhesives,2016,25(3),52(in Chinese).
季光明,殷跃洪,郑正.中国胶粘刻,2016,25(3),52.
11 Guo Z R, Zhao Y, Zhang X, et al. China Building Waterproofing,2016,18(12),9(in Chinese).
郭增荣,赵宇,张新,等.中国建筑防水,2016,18(12),9.
12 Duan Y G, Liu F F, Chen Y, et al. Acta Materiae Compositae Sinica,2012,13(4),41(in Chinese).
段玉岗,刘芬芬,陈耀,等.复合材料学报,2012,13(4),41.
13 Pedro R, Hamed A, Andrzej T, et al. Journal of Composite Materials,2013,1,17.
14 Bruce M. Manufacturing Engineering,2008,140(4),6.
15 Mohammad R,Michael S. Journal of Composite Science,2018,2,42.
16 Wood K. High-performance Composites,2014,22(1),25.
17 John T, Gillespie J. Journal of Composite Materials,2006,40,1487.
18 Ghasemi M N, Cope R D, Güceri S I. Journal of Thermoplastic Composite Materials,1991,1,20.
19 Lionetto, F, Dell′Anna R, Montagna F, et al. Composites Part A,2016,82,119.
20 Christine A B, Roy L M, Ranga P, et al. Journal of Thermoplastic Composite Materials,1998,11,338.
21 Noha H, Joseph E, Thompson R, et al. Journal of Reinforced Plastics and Composites,2005,24,869.
22 Li Y h, Fu H Y, Han Z Y. Polymers & Polymer Composites,2012,1,145.
23 Song Q H. Research on temperature field during automated fiber placement and the mechanical properties of thermoplastic composites. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2016(in Chinese).
宋清华.热塑性复合材料自动铺放过程温度场分析及构件性能研究.博士学位论文,南京航空航天大学,2016.
24 Li Z M, Yang T, Du Y, et al. Aerospace Materials & Technology,2012,3(10),20(in Chinese).
李志猛,杨涛,杜宇,等.宇航材料工艺,2012,3(10),20.
25 Yang T, Shen Y J, Yang S J, et al. Journal of Solid Rocket Technology,2015,38(3),410(in Chinese).
杨涛,申艳娇,杨素君,等.固体火箭技术,2015,38(3),410.
26 Han Z Y, Li Y H, Fu H Y, et al. Journal of Materials Engineering,2012,32(2),44(in Chinese).
韩振宇,李玥华,富宏亚,等.材料工程,2012,32(2),44.
27 Qureshi Z, Swait T, Scaife R. Composites Part B,2014,66,255.
28 Dipa R, Anthony J, John L, et al. Journal of Applied Polymer Science,2015,5,643.
29 Stokes M, Compston P. Composites Part A,2015,78,274.
30 Wen L W, Yu Y B, Qi J W, et al. Acta Aeronautica et Astronautica Sinica,2011(10),1937(in Chinese).
文立伟,余永波,齐俊伟,等.航空学报,2011(10),1937.
31 Guan X, Pitchumani R. Composites Science and Technology,2005,34,1374.
32 Guan X, Pitchumani R. Composites Science and Technology,2004,64,1134.
33 Sonmez F O, Akbulut M. Composites Part A,2007,38,2013.
34 Christopher M, Paul C, Timothy H, et al. Journal of Thermoplastic Composite Materials,2013,11,18.
35 Han Z Y, Cao Z L, Shao Z X, et al. Polymers & Polymer Composites,2014,22,721.
36 Dara P H, Loos A C. Processing of thermoplastic matrix composites, Virginia Polytechnic Institute and State University, Virginia, USA,1985.
37 Lee W, Springer G. Composite Materials,1987,21(11),1055.
38 Mantell S, Springer G. Composite Materials,1992,26(16),2348.
39 Pitchumani R, Gillespie J, Lamontia M. Journal of Composite Materials,1997,31,244.
40 Christophe A, Lin Y, Yiu W M, et al. Composites Part A,1998,29,911.
41 Tao Y, Shi Y Y, He X D, et al. Journal of Reinforced Plastics and Composites,2017,36(8),579.
42 Rao S, Umer R, Thomas J, et al. Journal of Reinforced Plastics and Composites,2016,35(4),275.
43 Cyril D, Anais B, Francisco C. International Journal of Material For-ming,2017,10,633.
44 Suong V, Minh D, Jeff S. Journal of Reinforced Plastics and Composites,2017,30(12),1693.
45 Yang F, Pitchumani R. Macromolecules,2002,35(8),3213.
46 Wool R, Connor K. Applied Physics,1981,52(10),5945.
47 Bastien L J, Gillespie J W. Polymer Engineering and Science,1991,31(24),1720.
48 Fazil O, Sonmez H, Thomas H. Journal of Thermoplastic Composite Materials,1997,11,543.
49 Yang F, Pitchumani R. Polymer Composites,2003,24(2),263.
50 Schaefer P, Guglhoer T, Sause M, et al. Journal of Reinforced Plastics and Composites,2017,8,593.
51 Dakai B, Bradley R, Shim D J, et al. Journal of Manufacturing Science and Engineering,2017,7,29.
52 Zhao P, Shirinzadeh B, Shi Y Y, et al. Journal of Reinforced Plastics and Composites,2017,17,1211.
53 Grouve W, Warnet L, Akkermanl R. International Journal of Material Forming,2010,3,707.
54 Lukaszewicz D, Potter K. In: International Technical Conference ‘advanced composites, The Integrated System’,USA,2011,pp.126.
55 Muhammad A K, Peter M, Ralf S. Journal of Composite Materials,2012,4,485.
56 Muhammad A, Peter M, Ralf S. Advances in Polymer Technology,2010,2,98.
57 Stokes C, Compston P. Composites Part A,2016,88,190.
58 Stokes C, Compston P. Composites Part A,2016,84,17.
59 Stokes C, Compston P. Composites Part A,2015,75,104.
60 Tannous M, Barasinski A, Binetruy C. Journal of Materials Processing Technology,2016,29,587.
61 Song Q H, Liu W P, Xiao J, et al. Acta Materiae Compositae Sinica,2018,25(5),32(in Chinese).
宋清华,刘伟平,肖军,等.复合材料学报,2018,25(5),32.
[1] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[2] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[5] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[6] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[7] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[8] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[9] 宋英豪, 薛宝霞, 彭云, 杨雅茹, 白洁, 牛梅. CMSs/APP对PET阻燃性能的影响[J]. 材料导报, 2018, 32(22): 3961-3966.
[10] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[11] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[12] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[13] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[14] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[15] 李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed