Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 881-893    https://doi.org/10.11896/cldb.201905021
  金属与金属基复合材料 |
小型化频率选择表面研究现状及其应用进展
王晖, 屈绍波
空军工程大学研究生院,西安 710051
Research Status and Application Progress of Miniaturized Element FrequencySelective Surface
WANG Hui, QU Shaobo
College of Graduate, Air Force Engineering University, Xi’an 710051
下载:  全 文 ( PDF ) ( 4198KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 频率选择表面是一种在平面内排布的二维周期阵列,由金属贴片单元或孔径单元构成,其对不同频率电磁波呈现不同的滤波响应,被广泛应用于雷达隐身、卫星通讯和电磁兼容等领域。随着应用对技术的要求不断提高,传统频率选择表面难以满足实际应用。原因有:(1)传统频率选择表面较大的单元尺寸会导致单元谐振时栅瓣过早出现,对传输特性产生不良影响;(2)传统频率选择表面较大的单元尺寸导致其很难在有限空间的区域内以及不规则天线罩上使用,且大尺寸使得现有工艺很难完成贴装布阵。而单元尺寸远小于工作波长的小型化频率选择表面MEFSS的出现为解决上述问题提供了新的思路,其优势日益凸显了自身的价值,逐渐发展成为新的研究方向。
最初的小型化频率选择表面通过结构上的交叉、旋绕、连接等模式来达到缩小单元尺寸的目的,最典型的方法就是单元的卷曲、交指设计。为了突破“单元尺寸与谐振波长一致”这一限制,实现小尺寸结构可以控制长波长谐振,通过金属贴片和网格经介质级联,产生了基于容性表面与感性表面耦合技术的小型化频率选择表面。该频率选择表面通过减小单元的有效电尺寸来实现小型化。耦合型双屏小型化频率选择表面主要分为:网栅及其互补结构、网栅和方环贴片阵列结构、方环贴片及其互补结构。这三种典型的耦合双屏结构是研究复杂耦合型小型化频率选择表面结构的基础。
由于前两类频率选择表面在实现小型化特性时都无法摆脱周期单元尺寸的制约,若需要更高的小型化需求时则难以实现。而加载无源集总元件(电容器、电感器)的频率选择表面可以增大等效电感L以及等效电容C的值,能够更大程度地缩小单元的有效电尺寸,使得频率选择表面小型化程度更高。为了拓展小型化频率选择表面的功能,在普通小型化频率选择表面单元或介质衬底上加入有源器件(变容二极管和 PIN二极管等)或采用特征媒质作为介质衬底等组成有源小型化频率选择表面。该频率选择表面在实现小型化特性的同时,通过对有源器件的调节来控制该频率选择表面的通带开关和变频特性等。
本文从单元卷曲和交指设计、基于容性表面与感性表面耦合技术设计、加载无源/有源集总元件技术设计等方面综述了小型化频率选择表面的研究状况。随后,对小型化频率选择表面在实际中的应用进行了介绍并对其未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晖
屈绍波
关键词:  频率选择表面  空间滤波器  小型化  电磁兼容  天线罩    
Abstract: Frequency selective surface (FSS) can be thought of as a kind of spatial filter. It is a two-dimensional (2D) periodic array of metallic patches or slots in a thin metallic sheet etched on a substrate, correspondingly with band-pass or band-stop behavior for incoming electromagnetic wave operating in different frequency ranges. FSSs are widely used for different applications,including radomes stealth, satellite communications, wireless security and electromagnetic compatibility. With increasing requirement of FSS technology, the traditional FSS can no longer well satisfy the practical application. The reasons lie in the following two aspects. Firstly, the large unit size of the traditional FSS will lead to the premature appearance of the grating lobe when the cell resonates, which will exert an adverse effect on the transmission characteristics. Secondly, due to the large unit size of the traditional FSS,it is extremely difficult to be applied in a limited space area or on an irregular radome, and the mounting layout can be hardly completed by the existing technology. Fortunately, the appearance of a miniaturized element frequency selection surface(MEFSS) whose unit size is much smaller than the working wavelength has provided a new idea for solving the above problems. The MEFSS has gradually shown its prominent advantages and developed into a new research direction.
Originally, cross, convolution and connection modes in structure are employed by MEFSS to achieve the purpose of unit size reduction. The most typical method is the unit curling and interdigitating design. Aiming at breaking through the restriction that “the unit size should be consistent with the resonance wavelength” and realizing the control of long wavelength resonance by small size structure, a MEFSS based on the capacitive surface and inductive surface coupling technology is produced by cascading metal patches and grids through the medium. This FSS achieves miniaturization by reducing the effective electrical size of the unit. The MEFSS surface of the coupling type double screen mainly includes mesh grid and its complementary structure, mesh grid and square ring patch array structure, square ring patch and its complementary structure, which lay the research foundation of complex coupled MEFSS structures.
Since the first two types of FSSs cannot get rid of the limitation of the periodic unit size when realizing miniaturization, it is hard to achieve hig-her miniaturization requirements. However, FSS loaded with passive lumped elements (capacitors, inductors) can increase the values of the equivalent inductance L and the equivalent capacitance C, and reduce the effective electrical size of the unit to a greater extent, making FSS more miniaturized. For the sake of expanding the function of MEFSS, active devices (varactors, pin diodes, etc.) are introduced to ordinary MEFSS units or dielectric substrates to form active MEFSS, or featured media is used as dielectric substrates to form active MEFSS. When this FSS realizes miniaturization characteristics, it controls the passband switch and frequency conversion characteristics of the FSS by adjusting the active devices.
This article summarizes the research status of MEFSS from the aspects of unit convolution design, interdigital design, capacitive surface and inductive surface coupling technology based design, and technical design of loading passive/active lumped elements. Subsequently, the application of MEFSS in practice is introduced and its future development direction is proposed.
Key words:  frequency selective surface    spatial filter    miniaturization    electromagnetic compatibility    radome
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TB33  
基金资助: 国家自然科学基金(61331005;61501502;61471388);陕西省创新团队项目(2014KCT-05)
作者简介:  王晖,2013年3月毕业于西安电子科技大学,获得工学硕士学位。现为空军工程大学电子科学与技术专业博士研究生,在屈绍波教授的指导下进行研究。目前主要研究领域为频率选择表面。屈绍波,教授、博士研究生导师,全国模范教师,全军学科拔尖人才,空军级专家,享受政府特殊津贴。研究方向是材料物理,超材料,电子材料和器件。qushaobo@mail.xjtu.edu.cn
引用本文:    
王晖, 屈绍波. 小型化频率选择表面研究现状及其应用进展[J]. 材料导报, 2019, 33(5): 881-893.
WANG Hui, QU Shaobo. Research Status and Application Progress of Miniaturized Element FrequencySelective Surface. Materials Reports, 2019, 33(5): 881-893.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905021  或          http://www.mater-rep.com/CN/Y2019/V33/I5/881
1 Munk B A. Frequency selective surfaces, New York Wiley Press, USA,2000.
2 Wu T K. Frequency selective surfaces and grid arrays, New York Wiley Press, USA,1995.
3 Romeu J, Rahamat-Samii Y. IEEE Transactions on Antennas and Propagation,2000,48(7),1097.
4 Gianvittorio J P, Romeu J, Blanch S, et al. IEEE Transactions on Antennas and Propagation,2003,51(11),3088.
5 Silva P H F. Microwave and Optical Technology Letters ,2009,51(8),1983.
6 Wang S S, Gao J S, Liang F C, et al. Acta Physica Sinica,2011,60(5),154(in Chinese).
王珊珊,高劲松,梁凤超,等.物理学报,2011,60(5),154.
7 Silva P H F. Microwave and Optical Technology Letters,2012,54(3),771.
8 Li Y J, Li L, Zhang Y L, et al. IEEE Transactions on Antennas and Propagation,2015,63(1),133.
9 Romeu J, Rahmat-Samii Y. IET Electronics Letters,1999,35(9),702.
10 Zheng S, Yin Y, Fan J, et al. IEEE Transactions on Antennas and Propagation,2012,11,240.
11 Liao Z, Wang T, Nie Y, et al. Physical Review B,2010,82,016603.
12 Tamijani A A, Sarabandi K, Rebeiz G M. IEEE Transactions on Microwave Theory and Techniques,2004,52(8),1781.
13 Sarabandi K, Behdad N. IEEE Transactions on Antennas and Propagation,2007,55(5),1239.
14 Salehi M, Behdad N. IEEE Microwave and Wireless Components Letters,2008,18,785.
15 Behdad N, Joumayly M A, Salehi M. IEEE Transactions on Antennas and Propagation,2009,57(2),460.
16 Al-Joumayly M A, Behdad N. IEEE Transactions on Antennas and Propagation,2010,58(22),4042.
17 Li M, Al-Joumayly M, Behdad N. IEEE Transactions on Antennas and Propagation,2013,61(3),1166.
18 Abdelrahman A H, Elsherbeni A Z, Yang F. IEEE Transactions on Antennas and Propagation,2014,62(2),690.
19 Abadi S M, Ghaemi K, Behdad N. IEEE Transactions on Antennas and Propagation,2015,63(2),534.
20 Hu X D, Zhou X L, Wu L S, et al. IEEE Antennas and Wireless Propagation Letters,2009,8,1374.
21 Wang D S, Che W Q, Chow Y L. IEEE Antennas and Wireless Propagation Letters,2013,12,468.
22 Wang D S, Che W Q, Chang Y M, et al. IET Microwaves, Antennas & Propagation,2014,8,186.
23 Ortiz J D, Baena J D, Losada V, et al. IEEE Microwave and Wireless Components Letters,2013,23(6),291.
24 Lu Z H, Liu P M, Huang X J. IEEE Antennas and Wireless Propagation Letters,2012,11,588.
25 Li B, Shen Z X. IEEE Transactions on Microwave Theory and Techniques,2013,61(10),3578.
26 Li B, Shen Z X. IEEE Transactions on Antennas and Propagation,2013,61(6),3053.
27 Li B , Shen Z X. IEEE Transactions on Antennas and Propagation,2014,62(1),130.
28 Li B , Shen Z X. IEEE Transactions on Antennas and Propagation,2014,62(11),5504.
29 Tao K, Li B, Tang Y, et al. Electronics Letters,2016,52(8),583.
30 Luo G Q, Hong W, Hao Z C, et al. IEEE Transactions on Antennas and Propagation,2005,53(12),4035.
31 Luo G Q, Hong W, Lai Q H, et al. IEEE Transactions on Microwave Theory and Techniques,2007,55(12),2481.
32 Luo G Q, Hong W, Tang H J,et al. IEEE Transactions on Antennas and Propagation,2007,55(1),92.
33 Luo G Q, Hong W, Lai Q H, et al. IET Microwaves, Antennas & Propagation,2008,2(1),23.
34 Zuo Y, Shen Z X, Feng Y J. Chinese Physics B,2014,23(3),232.
35 Zhu X C. IEEE Transactions on Antennas and Propagation,2014,62(2),940.
36 Wang H B, Cheng Y J. IEEE Transactions on Antennas and Propagation,2016,64(3),914.
37 Xu R R. Study on Multi-band frequency selective surfaces based on lumped element loadings and fractal structure. Ph.D. Thesis, Nanjing University of Science and Technology, China,2009(in Chinese).
许戎戎.基于集总元件加载和分型结构的多频频率选择表面研究.博士学位论文,南京理工大学,2009.
38 Shi L F, Zong Z Y, Xu R R, et al. Acta Electronica Sinica,2010,38(6),1362(in Chinese).
施凌飞,宗志园,许戎戎,等.电子学报,2010,38(6),1362.
39 Lazaro A, Ramos A, Girbau D, et al. IEEE Transactions on Antennas and Propagation,2013,61(3),1155.
40 Wang X Z. Study on the miniaturized-element frequency selective surface. Ph.D. Thesis, University of Chinese Academy of Sciences,China,2014(in Chinese).
王秀芝.小型化频率选择表面研究.博士学位论文,中国科学院大学,2014.
41 Parker E A, El Sheikh A N A. IEE Proceedings H-Microwaves, Antennas and Propagation,1991,138,19.
42 Parker E A, El Sheikh A N A. IET Electronics Letters,1991,27(4),322.
43 Parker E A, El Sheikh A N A, Lima A C. IEE Proceedings H-Microwaves, Antennas and Propagation,1993,40(5),378.
44 Huang F,Batchelor J C,Parker E A. IET Electronics Letters,2006,42,788.
45 Parker E A, Robertson J B, Sanz-Izquierdo B, et al. IET Electronics Letters,2008,44(6),394.
46 Xu R R, Zong Z Y, Wu W. Microwave and Optical Technology Letters,2009,51(5),1238.
47 Sanz-Izquierdo B, Parker E A, Robertson J B, et al. IEEE Transactions on Antennas and Propagation,2010,58(3),690.
48 Yang G, Zhang T, Li W, et al. IEEE Antennas and Wireless Propagation Letters,2010,9,1018.
49 Zheng S F, Yin Y Z, Zheng H L, et al. IET Electronics Letters,2011,47(4),306.
50 Chiu C N, Wang W Y. IEEE Antennas and Wireless Propagation Letters,2013,12,163.
51 Yan M B, Qu S B, Wang J F, et al. IEEE Antennas and Wireless Propagation Letters,2014,13,639.
52 Yu Y M, Chiu C N, Chiu Y H, et al. IEEE Transactions on Antennas and Propagation,2014,62(7),3657.
53 Bayatpur F. IEEE Antennas and Propagation Society International Syppo-sium,2007,9(15),3964.
54 Zheng S F. Study on the miniaturization and optimiation of frequency selective surfaces. Ph.D. Thesis, Xidian University, China,2012(in Chinese).
郑书峰.频率选择表面的小型化设计与优化技术研究.博士学位论文,西安电子科技大学,2012.
55 Yan M B, Qu S B, Wang J F, et al. Photonics and Nanostructures-Fundamentals and Applications,2015,17,1.
56 Behdad N, Sarabandi K. IEEE International Symposium on Antennas and Propagation,2006,1,4171.
57 Sarabandi K. IEEE Transactions on Antennas and Propagation,2007,55(5),1239.
58 Chiu C, Chang K. IEEE Antennas and Wireless Propagation Letters,2009,8,1175.
59 Bayatpur F. Metamaterial-inspired frequency-slective surfaces. Ph.D. Thesis, The University of Michigan, USA,2009.
60 Yan M B, Wang J F, Qu S B, et al. IEEE Transactions on Antennas and Propagation,2016,64(5),2046.
61 Yan M B, Wang J F, Qu S B, et al. IEEE Microwave and Wireless Components Letters,2016,26(8),562.
62 Yan M B, Qu S B, Wang J F, et al. IEEE Antennas and Wireless Propagation Letters,2015,14,1602.
63 Gao B X. Microwave integrated circuit, National Defense Industry Press, China,1995(in Chinese)
高葆新.微波集成电路,国防工业出版社,1995.
64 Scherz P. Practical electronics for inventors, Electronic Industry Press, China,2009(in Chinese).
Scherz P. 实用电子元器件与电路基础,电子工业出版社,2009.
65 Wu X , Pei Z B , Qu S B, et al. Journal of Air Force Engineering University,2011,12(2),86(in Chinese).
吴翔,裴志斌,屈绍波,等.空军工程大学学报,2011,12(2),86.
66 Bayatpur F, Sarabandi K. IEEE Transactions on Microwave Theory and Techniques,2008,56(4),774.
67 Bayatpur F, Sarabandi K. IEEE Transactions on Antennas and Propagation,2009,57(2),590.
68 Bayatpur F, Sarabandi K. IEEE Transactions on Microwave Theory and Techniques,2009,57(6),1433.
69 Bayatpur F, Sarabandi K. IEEE Transactions on Antennas and Propagation,2010,58(4),1214.
70 Huang J, Wu T K, Lee S W. IEEE Transactions on Antennas and Propagation,1994,42(2),166.
71 Wu T K, Lee S W. IEEE Transactions on Antennas and Propagation,1994,42(11),1484.
72 Wu T K. IEEE Transactions on Antennas and Propagation,1994,42(12),1659.
73 Sung G H, Sowerby K W, Williamson A G. IEEE Antennas and Wireless Propagation Letters,2006,5,311.
74 Yan M B, Qu S B, Wang J F, et al. IEEE Antennas and Wireless Propagation Letters,2014,13,895.
[1] 王晋枝,姜淑文,朱小鹏. 添加WS2/MoS2固体润滑剂的自润滑复合涂层研究进展[J]. 材料导报, 2019, 33(17): 2868-2872.
[2] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[3] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[4] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[5] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[6] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[7] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[8] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[9] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed