Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 819-825    https://doi.org/10.11896/cldb.201905014
  无机非金属及其复合材料 |
纤维增强水泥基复合材料的流动性与流变性研究进展
司雯, 曹明莉, 冯嘉琪
大连理工大学土木工程学院,大连 116024
Advances in Research on Flowability and Rheological Properties of Fiber Reinforced Cementitious Composites
SI Wen, CAO Mingli, FENG Jiaqi
School of Civil Engineering, Dalian University of Technology, Dalian 116024
下载:  全 文 ( PDF ) ( 1717KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维增强水泥基复合材料(Fibers reinforced cementitious composites, FRCC)具有优异的抗拉、抗弯、耐久性等硬化性能,因此被广泛应用于道路、桥梁等建筑工程中。但纤维的存在常导致材料在拌合状态下无法良好成型,进而导致其力学性能劣化。为了优化拌合物性能,其流动性与流变性受到了人们的广泛关注。传统的流动性试验能够快速检验拌合物是否达到了成型要求,但存在人工误差并且测试范围有限;而流变试验则能反映出拌合物在剪切应力条件下材料各组分之间的相互作用,但难以应用于工程。两种试验各有利弊,但互为补充。因此,建立拌合物流动性与流变性之间的关系成为研究水泥基材料拌合性能的必然趋势。
为了分析二者的关系,流动性能与流变性能的机理分析是必要的。在实验设计中,研究者们通常采用的手段是对材料的组分进行调整,宏观调控基准配合比或者改变纤维参数,通过对比各因素下拌合物的流动参数及流变参数,或结合硬化材料的微观结构,最终得到拌合性能与硬化性能俱佳的最优化配比。在这一过程中,可获得流动参数与流变参数的变化规律,由数学拟合或者分析模型则可以得到二者关系式。水泥基材料最初的流动-流变关系式由此得来。
然而,这种传统分析方法的适用性受到外加剂、材料品种、分析模型等多方面差异的影响,其关系式的物理意义及适用性都是模糊不清的。由于高性能纤维水泥基材料逐渐成为研究对象,低水胶比的设计要求必然导致减水剂的大量使用,多种矿物外加剂的复掺也会改变基体的内部结构,使分析环境更为复杂。此外,关系式的建立依赖于流变分析模型,不同的纤维水泥基材料对应的流变模型也可能不同,这些因素都导致传统的流动-流变关系式无法应用于新型的、掺有纤维的水泥基材料。为了减少因素变化给关系式带来的影响,基于材料自身性质的分析方法是可取的。以材料固有属性为参数建立关系式,试验数据仅作为验证,最终得到的关系式不以试验条件为转移,具有更广泛的适用性与可靠性。
本文通过综述FRCC拌合物性能的研究进展,分析了不同纤维因素和基体因素对FRCC拌合物性能的影响方式,探讨了FRCC拌合物的流动性与流变性的关系,指出了现阶段对FRCC拌合物性能研究的不足,为以多尺度混杂纤维增强水泥基材料(Hybrid fibers reinforced cementitious composites, HyFRCC)为代表的新型FRCC的拌合物性能研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
司雯
曹明莉
冯嘉琪
关键词:  纤维  流动性  流变性  纤维/基体因素    
Abstract: Fibers reinforced cementitious composites are widely used in roads, bridges and other construction projects because they have excellent har-dened state properties, including stretching, bending and durability. Nevertheless, cementitious materials can hardly be well formed in the mixing state with the presence of fibers, which would deteriorate the properties of their hardened state. For the sake of optimizing the performance of mixtures, more and more efforts have been paid into the research on the flowability and rheological properties. Traditional flowability test is capable of determining whether the mixtures meet the molding requirements in a short period of time, but it suffers from manual errors and limited test range. The rheological test can reflect the interaction among the components of the mixtures under shear stress, yet it is difficult to be applied in practical projects. There are pros and cons in both test, but they can complement each other. Consequently, it is an inevitable trend to establish the relationship between the flowability and rheological properties of cement-based materials.
Aiming at analyzing the relationship between flowability and rheological properties, it is necessary to figure out the mechanism of them. In the experimental design, common approaches adopted by researchers include adjusting the composition of the material, regulating the proportion of components or changing the fiber parameters. The optimal ratio with better fresh performance and hardening performance can be acquired by comparing the flowability and rheological parameters of the mixtures under various factors and observing the microstructure of the hardened materials. In addition, the variation of flowability and rheological parameters can be found out in this process, and the relationship between them can be further obtained by mathematical fitting or analysis model. As a results, the initial flowability-rheology equation of cement-based materials emerge.
Unfortunately, the applicability of this traditional analytical method is questioned under diverse additives, materials, analysis models and so forth. The physical meaning and applicability of the relationship are ambiguous. As high performance fiber reinforced cement-based materials are increasingly popular and become the research focus, their design requirements of low water-to-binder ratio will inevitably lead to the use of superplasticizer in large amount. At the same time, the mixing of various mineral admixtures will also change the internal structure of the matrix, making the analysis environment get much more complicated. In addition, the establishment of the relationship rests on the rheological models, and the rheological models corresponding to various fiber cement materials may quite different. These factors make the traditional flow-rheological relationship no longer appropriate to describe the new cement-based materials with fibers. In order to reduce the impact of the factors change on the relationship, it is advisable to analyze the material based on its own properties. The relationship established by taking the inherent properties of the material as parameters and using the test data only for verification will not affected by test conditions and exhibits wider applicability and higher reliability.
Based on the research progress on fresh FRCC mixtures performance, the effect on the fresh properties of different fiber factors and matrix factors in cement-based materials is analyzed, the relationship between the workability and rheological properties is discussed, and the deficiency of the research on the performance of FRCC mixture at present is pointed out, for the sake of providing the reference for the research of workability and rheological properties on the new FRCC, represented by multi-scale hybrid fiber reinforced cementitious composites (HyFRCC).
Key words:  fiber    flowability    rheological properties    fiber/matrix factors
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TB332  
基金资助: 基金项目:国家自然科学基金(51678111;51478082)
作者简介:  司雯,2016年6月毕业于青岛理工大学,获得工学学士学位。现为大连理工大学建筑材料研究所博士研究生,在曹明莉副教授的指导下进行研究。目前主要研究领域为高性能纤维增强水泥基材料。曹明莉,大连理工大学建筑材料研究所副教授,博士。主持两项国家自然科学基金面上项目:新型混杂纤维增强水泥基复合材料(HyFRCC)的流变特性及机理研究(51678111)及基于多层次结构特征的新型混杂纤维增强水泥基复合材料(HyFRCC)的性能及机理研究(51478082)。minglic@dlut.edu.cn。冯嘉琪,2016年6月毕业于华北水利水电大学,获得工学学士学位。现为大连理工大学建筑材料研究所硕士研究生,在曹明莉副教授的指导下进行研究。目前主要研究领域为高性能纤维增强水泥基材料。
引用本文:    
司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
SI Wen, CAO Mingli, FENG Jiaqi. Advances in Research on Flowability and Rheological Properties of Fiber Reinforced Cementitious Composites. Materials Reports, 2019, 33(5): 819-825.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905014  或          http://www.mater-rep.com/CN/Y2019/V33/I5/819
1 Li V, Wang S X, Wu C. ACI Materials Journal,2001,98(6),483.
2 Ozyurt N, Mason T O, Shah S P. Cement and Concrete Composites,2007,29(2),70.
3 Kuder K G, Ozyurt N, Mu E B, et al. Cement and Concrete Research,2007,37(2),191.
4 China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete CECS 13-2009. China Planning Press, China,2009(in Chinese).
中国工程建设标准化协会.纤维混凝土试验方法标准: CECS 13-2009.中国计划出版社,2009.
5 Feys D, Wallevik J E, Yahia A, et al. Materials and Structures,2013,46(1),289.
6 Ferraris C, De Larrard F, Martys N. In: Materials Science of Concrete VI, Mindess S, Skalny J, ed., The American Ceramic Society, United States,2001,pp.215.
7 Hao Y Z. Advances in Science and Technology of Water Resources,2000,20(4),32(in Chinese).
郝永真.水利水电科技进展,2000,20(4),32.
8 Sahmaran M, Yurtseven A, Ozgur Yaman I. Building and Environment,2005,40(12),1672.
9 Banfill P F G, Starrs G, Derruau G, et al. Cement and Concrete Compo-sites,2006,28(9),773.
10 Grünewald S, Walraven J C. Cement and Concrete Research,2001,31(12),1793.
11 Barnes H A. In: A handbook of elementary rheology. The University of Wales Institute of Non-Newtonian Fluid, UK,2000,pp.587.
12 Kwan A K H, Fung W W S, Wong H H C. Advances in Cement Research,2010,22(1),3.
13 Fung W W S, Kwan A K H. Cement and Concrete Composites,2010,32(4),255.
14 Martinie L, Rossi P, Roussel N. Cement and Concrete Research,2010,40(2),226.
15 Dhonde H B, Mo Y L, Hsu T T C, et al. ACI Materials Journal,2007,104(5),491.
16 Mehdipour I, Libre N A, Shekarchi M, et al. Construction and Building Materials,2013,40(7),611.
17 Emdadi A, Mehdipour I, Libre N A, et al. Materials and Structures,2015,48(4),1149.
18 Philipse A P. Langmuir,1996,12(5),1127.
19 Yamamoto S, Matsuoka T. The Journal of Chemical Physics,1993,98(1),644.
20 Iii L S, Klingenberg D. Journal of Rheology,2003,47(3),759.
21 Cao M L, Xu L, Li Z W. Journal of Building Materials,2017,20(1),112(in Chinese).
曹明莉,许玲,李志文.建筑材料学报,2017,20(1),112.
22 Wang Q. Experimental research on self-consolidating PVA fiber reinforced cementitious composites. Master’s thesis, Dalian Maritime University, China,2016(in Chinese).
汪琪.自密实PVA纤维增强水泥基复合材料性能研究.硕士学位论文,大连海事大学,2016.
23 Pajak M, Ponikiewski T. Construction and Building Materials,2013,47(10),397.
24 Ma L, He Z Y, Wang W W. Henan Science,2002,20(6),760(in Chinese).
马兰,何正勇,王文安.河南科学,2002,20(6),760.
25 Cao M, Xu L, Zhang C. Composites Part A: Applied Science and Manufacturing, 2016, 90(Supplement C),662.
26 Wang R, Gao X, Huang H, et al. Construction and Building Materials,2017,144(9),65.
27 Savastano H, Warden P G, Coutts R S P. Cement and Concrete Compo-sites,2005,27(5),583.
28 Li V C, Stang H. Advanced Cement Based Materials,1997,6(1),1.
29 Beigi M H, Berenjian J, Lotfi Omran O, et al. Materials & Design,2013,50(50),1019.
30 Gencel O, Brostow W, Datashvili T, et al. Composite Interfaces,2011,18(2),169.
31 Xu L. Rheology of new hybrid fiber reinforced cementitious composites (HyFRCC). Master’s thesis, Dalian University of Technology, China,2016(in Chinese).
许玲.新型混杂纤维增强水泥基材料(HyFRCC)的流变性能.硕士学位论文,大连理工大学,2016.
32 Jiang S, Shan B, Ouyang J, et al. Construction and Building Materials,2018,158(Supplement C),786.
33 Zhang Y R. Study on the microstructure and rheological properties of cement-chemical admixtures-water dispersion system at early stage. Ph.D. Thesis, Tsinghua University, China,2014(in Chinese).
张艳荣.水泥—化学外加剂—水分散体系早期微结构与流变性.博士学位论文,清华大学,2014.
34 Zhao S, Yu B, Xia Y B. Journal of Shenyang Jianzhu University (Natural Science),2010,26(4),724(in Chinese).
赵苏,于渤,夏义兵.沈阳建筑大学学报(自然科学版),2010,26(4),724.
35 De Larrard F, Szitcar J, Hu C, et al. In: Special Concretes-Workability and Mixing, P.J.M. Bartos, ed., CRC Press, France,1993,pp.55.
36 Ferraris F C, De Larrard F. In: Testing and modelling of fresh concrete rheology, National Institute of Standards and Technology Internal Report, United States,1998.
37 Roussel N, Stefani C, Leroy R. Cement and Concrete Research,2005,35(5),817.
38 Roussel N. Materials and Structures,2006,39(4),501.
39 Wang H, Gao X, Wang R. Construction and Building Materials,2017,134(11),673.
40 Hossain K M A, Lachemi M, M S. Journal of Materials in Civil Enginee-ring,2012,24(9),1211.
41 Li H, Huang F, Xie Y, et al. Construction and Building Materials,2017,131(7),585.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[3] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[4] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[5] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[6] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[7] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[8] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[9] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[10] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[11] 戴红, 刘跃军, 崔玲娜, 李秋艾. PBSu/PBAu嵌段聚酯酰脲共聚物的合成及流变性能[J]. 材料导报, 2019, 33(2): 347-351.
[12] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[13] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[14] 金克霞,江泽慧,刘杏娥,杨淑敏,田根林,马建锋. 植物细胞壁纤维素纤丝聚集体结构研究进展[J]. 材料导报, 2019, 33(17): 2997-3002.
[15] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed