Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 826-833    https://doi.org/10.11896/cldb.201905015
  无机非金属及其复合材料 |
近场动力学方法研究复合材料失效的进展
郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞
山东理工大学交通与车辆工程学院,淄博 255049
Peridynamics Study on Failure of Composite Materials: a Review
GUO Shuai, JIAO Xuejian, LI Lijun, DONG Shuhua, SUN Fengshan, SHAN Hairui
School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049
下载:  全 文 ( PDF ) ( 2355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 复合材料与单一材料相比具有更高的比刚度和比模量,是重要的工程结构材料,但复合材料失效产生和扩展的机理非常复杂。基于传统连续介质力学理论的方法(如有限元法)求解复合材料的静态和准静态问题时,其理论解和标准试验结果一致。但在求解动态问题时,则需要对连续介质理论进行修改,而且需要额外的失效判断标准和附加函数。尽管如此,传统方法仍无法准确模拟三维裂纹和群裂纹等复杂裂纹的扩展。近场动力学理论(简称PD理论)将传统连续介质力学本构方程中的微分项用积分项代替,避免了由裂纹造成的导数求解奇异性。PD理论应用于失效扩展的模拟具有三大优势:(1)不需要额外的失效判断标准,自发模拟裂纹的产生和扩展;(2)更改本构力函数能对不同尺度的问题进行建模;(3)同一计算体系框架下,能够同时处理多条裂纹的产生和扩展,并考虑它们之间的相互作用。
复合材料的不均匀性及其力学性能的各向异性,使得PD模型中的点对力函数无法全面地描述复合材料的各向异性行为,构建理想的数学模型较为困难。PD理论的实质是将模型离散为一系列点,计算在一个点近场范围内所有其他点对该点作用力的合力,这导致PD方法的计算量非常大。因此,近几年PD方法应用于复合材料失效的研究主要集中于理论模型和计算体系的不断发展完善,并取得一系列成果。目前,已发展出多种复合材料的PD模型,开发出新的算法和求解策略,能够较好地模拟复合材料的多种失效模式,并提高计算效率。
成功模拟复合材料多种失效模式的PD模型包括:基于纤维键和基体键的模型与基于法向键和剪切键的模型。基于纤维键和基体键的模型是最早建立的复合材料PD模型,通过在材料点对的本构力函数中增加适当的修改项来描述材料的本构信息。基于法向键和剪切键构建的模型,本构力函数中变形量的求解形式类似于传统连续介质力学中应变的表达,能直接在失效结果图中显示力学参量的变化。动态自适应松弛技术、并行算法等已经应用于PD方法并成功提高了计算效率,此外,针对PD方法的计算体系开发了快速算法和转化方程;求解策略上,成功将PD模型和有限元模型进行耦合,将PD模型布置在核心(失效扩展)区域,有限元模型布置在其他区域,在保证求解精度和正确性的基础上提高计算效率。
本文归纳了PD方法研究复合材料失效的进展,分别对PD方法的理论框架、复合材料的PD模型、新的求解算法和求解策略以及PD方法在复合材料失效方面的应用等进行介绍,分析了PD方法在研究复合材料失效中存在的问题并展望其前景,以期为PD方法在复合材料失效机理研究中的进一步应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭帅
焦学健
李丽君
董抒华
孙丰山
单海瑞
关键词:  复合材料  近场动力学  失效模式  数学模型    
Abstract: It is universally known that composite materials possess higher specific stiffness and specific modulus than conventional single materials. Therefore, composite materials have become important structural materials in engineering practice. Nevertheless, the mechanism of failure generation and propagation for composite materials is quite complicated. Although, accordant results of the theoretical solution and standard tests concerning the static and quasi-static problems of composite materials can be achieved by traditional continuum mechanics theory (like the finite element method), modification of the continuum theory, as well as additional the criterion of failure and functions are needed when it comes to dynamic problems. However, the traditional method still cannot accurately simulate the propagation of complex cracks, like 3D cracks and group cracks. Fortunately, the peridynamics theory (referred to as PD theory) replaces the differential term in the traditional constitutive equations of continuum mechanics with the integral term, avoiding the singularity of derivative solution caused by the crack. The application of PD theory to fai-lure-propagation simulation presents the following three major advantages. Ⅰ. It can spontaneously simulate the crack generation and propagation without additional failure criterion. Ⅱ. It is capable of modeling issues in different scales by varying the constitutive force function. Ⅲ. It can simultaneously handle the propagation of multiple cracks while considering their interactions under the framework of the same computing system.
Unfortunately, the heterogeneity of composite materials and their anisotropy of mechanical properties make it difficult to construct an ideal mat-hematical model because the point-to-point force function in the PD model cannot fully describe the anisotropic behavior of the composites. In addition, the essence of PD theory is to discrete the model into a series of points, and calculate the resultant force of all the other points in the near-field range of one point, which leads to a huge amount of computation of the PD method. Therefore, in recent years, the application of PD theory in the study of composite material failure mainly focus on building a reasonable theoretical model of composite materials and continuous development of the computational efficiency, and a series of results have been achieved. At present, a variety of composite materials PD models have been developed, which can effectively simulate the multiple failure of fiber fracture, matrix crack and delamination. The new algorithm and the solution strategy can greatly speed up the calculation of solution while ensure the accuracy.
The PD models that successfully simulated the failure modes of composites include models based on fiber bonds and matrix bonds, and models based on normal bonds and shear bonds. The model based on fiber bonds and matrix bonds is the earliest established PD model of composite materials, which describe the constitutive information of materials by adding appropriate modification items to the constitutive force functions of two material point pairs. For the model based the normal bond and shear bond, the solution of deformation in the constitutive force function is similar to the expression of the strain in the traditional continuum mechanics, and the change of the mechanical parameters can be directly displayed in the final failure result graph. For the sake of improving computational efficiency, dynamic adaptive relaxation techniques and parallel algorithms have been successfully applied to the PD method. In addition, fast algorithms and transformation equations have been developed for the PD mo-del. Moreover, the PD model and the finite element model also have been successfully coupled to solve the problem. The PD model is arranged in the core (failure expansion) area, and the finite element model is arranged in other areas, so as to reduce the calculation amount and improve the calculation efficiency, as well as ensure the accuracy and correctness of the solution.
In this article, the progress of PD method in the study of composite failure is summarized. The theoretical framework of the PD method, the PD model of the composite material, the new solution algorithm and solution strategy, and the application of the PD method in the failure of composite materials are introduced respectively. The problems and prospects in the study of composite materials failure are proposed, so as to provide a reference for the further application of PD method in the study of failure mechanism of composite materials.
Key words:  composite    peridynamics    failure mode    mathematic model
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51505261);山东省自然科学基金(ZR2015AM013)
作者简介:  郭帅,2016年6月毕业于山东农业大学,获得工学学士学位。现为山东理工大学交通与车辆工程学院硕士研究生,在焦学健副教授的指导下进行研究。目前主要研究领域为近场动力学理论以及复合材料在车辆中的应用。焦学健,山东理工大学交通与车辆工程学院副教授、硕士研究生导师。主要从事近场动力学理论研究;虚拟现实与虚拟仿真技术及应用开发;先进复合材料在车辆中的应用。jeosword@126.co
引用本文:    
郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
GUO Shuai, JIAO Xuejian, LI Lijun, DONG Shuhua, SUN Fengshan, SHAN Hairui. Peridynamics Study on Failure of Composite Materials: a Review. Materials Reports, 2019, 33(5): 826-833.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905015  或          http://www.mater-rep.com/CN/Y2019/V33/I5/826
1 Zhang P, Zhu Q, Qin H R, et al. Materials Review A: Review Papers,2014,28(6),27(in Chinese).
张鹏,朱强,秦鹤勇,等.材料导报:综述篇,2014,28(6),27.
2 Hallett S R, Wisnom M R. Journal of Composite Materials,2006,40(2),119.
3 Green B G, Wisnom M R, Hallett S R. Composites Part A Applied Science & Manufacturing,2007,38(3),867.
4 Wu E M. Fracture mechanics of anisotropic plates, Tech-nomic Publishing Co., USA,1968.
5 Moes N, Dolbow J, Belytschko T. International Journal for Numerical Methods in Engineering,1999,46(1),131.
6 Lucy L. Astronomical Journal,1997,82(2),1013.
7 Silling S A. Journal of the Mechanics and Physics of Solids,2000,48,175.
8 Huang D,Zhang Q,Qiao P Z,et al. Advances in Mechanics,2010,40(4),448(in Chinese).
黄丹,章青,乔丕忠,等.力学进展,2010,40(4),448.
9 Qiao P Z,Zhang Y,Zhang H,et al. Chinese Quarterly of Mechanics,2017(1),1(in Chinese).
乔丕忠,张勇,张恒,等.力学季刊,2017(1),1.
10 Kilic B. Peridynamics theory for progressive failure prediction in homogeneous and heterogeneous materials. Ph.D. Thesis. University of Arizona, USA,2008.
11 Silling S A, Askari E. Computers & Structures,2005,83,526.
12 Macek R W,Silling S A. Finite Elements in Analysis and Design,2007,43(15),1169.
13 Silling S A, Simon K. In: Conference on High Speed Computing. Gleneden Beach, Oregon,2004,pp.32.
14 Emmrich E, Weckner O. Mathematics & Mechanics of Solids,2007,4(4),363.
15 Lapidus L, Pinder G F. Numerical Solution of Partial Differential Equations in Science and Engineering. John Wiley & Sons, USA,2011.
16 Askari E, Xu J, Silling S A. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada,2006,pp.88.
17 Kilic B, Agwai A, Madenci E. Composite Structures,2009,90,141.
18 Hu W, Ha Y D, Bobaru F. Computer Methods in Applied Mechanics and Engineering,2012,217-220,247.
19 Whitney J M, Ashton J E. Structural analysis of laminated anisotropic plates∥Structural analysis of laminated anisotropic plates. Technomic Pub. Co., USA,1987.
20 Ravi-Chandar K, Knauss W G. International Journal of Fracture,1984,26(3),189.
21 Hu Y L, Yu Y, Wang H. Composite Structures,2014,108,801.
22 Oterkus E, Madenci E. Journal of Mechanics of Materials and Structures,2012,7(1),45.
23 Hu Y, Madenci E, Phan N D. In:57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. California,2016,pp.1723.
24 Roy P, Deepu S P, Pathrikar A, et al. Composite Structures,2017,180,972.
25 Diehl P, Franzelin F, Pflüger D, et al. International Journal of Fracture,2016,201(2),1.
26 Yaghoobi A, Mi G C. Engineering Fracture Mechanics,2016,169,238.
27 Gerstle W, Sau N, Silling S. In:Proceedings of the 8th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18).Beijing, China,2005,pp.54.
28 Hu Y L, Carvalho N V D, Madenci E. Composite Structures,2015,132,610.
29 Hu Y L, Madenci E. In: 57th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. San Diego,2016,pp.1722.
30 Hu Y L, Madenci E. Composite Structures,2016,153,139.
31 Hu Y, Madenci E, Phan N. Fatigue & Fracture of Engineering Materials & Structures,2017,40(8),1214.
32 Hu Y, Madenci E. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Alabama,2017,pp.1140.
33 Hu Y L, Madenci E. Composite Structures,2017,160,169.
34 Littlewood D J. SAND Report, Sandia National Laboratories, USA,2015.
35 Kilic B, Madenci E. Theoretical and Applied Fracture Mechanics,2010,53(3),194.
36 Huang D, Lu G, Wang C, et al. Engineering Fracture Mechanics,2015,141(5),196.
37 Wang H, Tian H. Journal of Computational Physics,2012,231(23),7730.
38 Le Q, Chan W, Schwartz J. International Journal for Numerical Methods in Engineering,2011,98(8),1885.
39 Wang H, Du N. Journal of Computational & Applied Mathematics,2014,255(285),376.
40 Wang H, Du N. Journal of Computational Physics,2014,258(1),305.
41 Paola M D, Failla G, Zingales M. International Journal of Solids & Structures,2010,47(18-19),2347.
42 Lubineau G, Yan A, Han F, et al. Journal of the Mechanics & Physics of Solids,2012,60(6),1088.
43 Han F, Lubineau G, Yan A, et al. Computer Methods in Applied Mecha-nics & Engineering,2016,301,336.
44 Yan A, Han F, Lubineau G. International Journal of Solids & Structures,2013,50(9),1332.
45 Yan A, Han F, Lubineau G. Computational Mechanics,2014,54(3),711.
46 Lee J, Oh S E, Hong J W. International Journal of Fracture,2016,203(1-2),1.
47 Bobaru F, Ha Y D. International Journal for Multiscale Computational Engineering,2011,9(6),635.
48 Dipasquale D, Zaccariotto M, Galvanetto U. International Journal of Fracture,2014,190(1-2),1.
49 Ren H, Zhuang X, Cai Y, et al. International Journal for Numerical Methods in Engineering,2016,108(12),1451.
50 Bažant Z P, Luo W, Chau V T, et al. Journal of Applied Mechanics,2016,83(11),111004.
51 Silling S, Epton M, Weckner O, et al. Journal of Elasticity,2007,88(2),151.
52 Yang-Tian Y, Zhang Q, Xin G U. Engineering Mechanics,2016,33(12),80.
53 Gu X, Zhang Q, Huang D, et al. Engineering Fracture Mechanics,2016,160(160),124.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed