Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2949-2957    https://doi.org/10.11896/cldb.17110242
  高分子与聚合物基复合材料 |
纳米纤维素改性及其在柔性电子方面的应用
王瑞平,袁长龙,陶劲松
华南理工大学制浆造纸工程国家重点实验室,广州 510641
Modification of Cellulose Nanofibrils and Its Applicationin Flexible Electronics
WANG Ruiping, YUAN Changlong, TAO Jingsong
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641
下载:  全 文 ( PDF ) ( 13306KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着全球气候的改变和资源短缺,环境友好的可再生材料受到了广泛关注。纤维素广泛存在于自然界中,是一种绿色的可再生资源。通过化学、机械、酶解等方法处理纤维原料制得的纳米纤维素(Cellulose nanofibrils,CNF)具有比表面积大、长径比高、结晶度高、透明、成膜性好和可降解等优良的性质,在绿色柔性电子材料领域表现出极大的应用潜力。
   然而,纳米纤维素的发展及应用过程中仍存在以下问题;(1)从天然纤维素中分离纳米纤维素的制备周期长、能耗大、成本高,目前这些问题导致其大规模化生产还面临挑战;(2)纳米纤维素比表面积大,易于团聚,在非极性有机溶剂中的分散性差,在与聚合物复合应用中有一定困难;(3)纳米纤维素的表面活性基团主要是羟基,功能性单一,这限制了纳米纤维素的应用;(4)纳米纤维素在柔性电子材料应用中的某些性能如耐折性、水氧阻隔性、防水性、耐候性和耐热性等还需进一步提高。
   国内外对于纳米纤维素的制备、改性及在柔性电子材料方面的应用研究主要集中于:(1)通过探索新型高效环保溶剂体系制备纳米纤维素,缩短制备周期,制备过程绿色环保。(2)目前,纳米纤维素的改性及在柔性电子领域的应用主要在于如何提高其热学性能、分散性及与其他复合材料的兼容性等方面。通过小分子化学反应,引入的乙酰基等基团可有效增强其疏水性、在非极性溶剂中的分散性及热学性能;通过聚合接枝反应,可以改善其在有机溶剂中的分散性能,还能根据所接物质的不同,实现纳米纤维素的功能化改性;物理吸附改性使其疏水性增强,分散性提高。(3)纳米纤维素在有机发光器二极管、太阳能电池、超级电容器、无线射频识别、触摸屏、晶体管等柔性电子材料中具有巨大的应用前景,需对其研究现状进行系统阐述。
   本文综述了纳米纤维素的制备原理和方法,为扩大其应用范围,重点概括了CNF的酯化、酰胺化、离子络合、阳离子化、聚合物接枝和表面活性剂吸附等多种改性方法,并对CNF作为绿色电子新材料在有机发光器件、太阳能电池、超级电容器、无线射频识别、触摸屏、晶体管等柔性电子材料中的研究现状进行了总结,分析了该领域存在的问题,展望了其发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑞平
袁长龙
陶劲松
关键词:  纳米纤维素  分散性  基底  柔性电子材料    
Abstract: In recent years, with the global climate change and shortage of resources, environmental friendly renewable materials have received extensive attention.Cellulose is widely found in nature and it is a green, renewable resource.Cellulose nanofibrils (CNF) that prepared bychemical, mechanical, enzymatic, etc., have properties such as large specific surface area, high aspect ratio, and high crystallinity, transparent, film-forming, degradable and they have great potential applications in the field of flexible electronic materials.
However, the following problems still exist in the development and application of cellulose nanofibrils : (1) the long preparation cycle, high energy consumption and high cost of the separation of cellulose nanofibrils from natural cellulose caused its scale production to face challenges; (2) cellulose nanofibrils has large specific surface area, easy to agglomerate, poor dispersibility in non-polar organic solvents and it has difficulties in composite application with polymers; (3) the surface active group of cellulose nanofibrils is mainly hydroxyl and has a single function, which limits the application of cellulose nanofibrils; (4) some properties of cellulose nanofibrils in flexible electronic materials such as folding resistance, water oxygen barrier properties, water repellency, weather resistance, and heat resistance need to be further improved.
Domestic and foreign researches oncellulose nanofibrils preparation, modification and application in flexible electronic materials mainly focus on:(1) preparation of cellulose nanofibrils by exploring a novel and efficient environmentally friendly solvent system can effectively shorten the preparation cycle and the preparation process is green. (2) At present, the modification of cellulose nanofibrils and its main applications in the field of flexible electronics mainly focus on how to improve its thermal properties, dispersibility and compatibility with other composite materials. Through the small molecule chemical reaction, the introduced acetyl group and other groups can effectively increase its hydrophobicity, dispersibility and thermal properties in a non-polar solvent; by polymerization grafting reaction, the dispersion property in an organic solvent can be improved, and functional modification can also be realized according to the different materials; physical adsorption modification enhances hydrophobicity and improves dispersibility.(3) Cellulose nanofibrils has great application prospects in flexible electronic materials such as organic light-emitting diodes, solar cells, supercapacitors, radio frequency identification, touch screens, transistors, etc. It is necessary to systematically expound its research status.
This paper summarizes the preparation principle and methods of cellulose nanofibrils, and in order to enlarge its application scope, mainlysummarizes the modified methods of CNF, such as esterification, amidation, ion complexing, cationic, graft polymer and surfactant adsorption and so on, and then summarizes the research status of CNF as green electronic new material in flexible electronic, such as organic light-emitting devices, solar cells, supercapacitors, radio frequency identification, touch screens, transistors and so on analyzes the problems existingin the field and discusses its development prospects.
Key words:  cellulose nanofibrils (CNF)    dispersion    substrate    flexible electronic materials
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  TS721  
基金资助: 广东省科技计划项目(2017A010103006);广州市科技计划项目(201804010368);广州市开发区国际科技合作项目(2017GH35)
作者简介:  王瑞平,现为华南理工大学硕士研究生,在陶劲松副研究员的指导下进行研究。目前主要研究领域为纳米纤维素在柔性电子器件中的应用。
陶劲松,华南理工大学制浆造纸工程国家重点实验室副研究员、博士,硕士生导师。2006年博士毕业于华南理工大学制浆造纸工程专业。2004年在美国马里兰大学进行访问,2005年回国后,致力于纤维先进材料和造纸节能研究。在Energy Environ. Sci.、Adv. Electron. Mater.、ACS Appl. Mater. Inter.、Mater. Mater. Lett.、Environ. Prog. Sustain、Instrum. Sci.& Technol.、Dry Technol.、Meas. & Contro.等学术刊物上发表论文80多篇;2012年3月获广东省科学技术奖二等奖(B030207R04),现为广东省“千百十”人才计划第八批支持人才。
王瑞平,现为华南理工大学硕士研究生,在陶劲松副研究员的指导下进行研究。目前主要研究领域为纳米纤维素在柔性电子器件中的应用。
陶劲松,华南理工大学制浆造纸工程国家重点实验室副研究员、博士,硕士生导师。2006年博士毕业于华南理工大学制浆造纸工程专业。2004年在美国马里兰大学进行访问,2005年回国后,致力于纤维先进材料和造纸节能研究。在Energy Environ. Sci.、Adv. Electron. Mater.、ACS Appl. Mater. Inter.、Mater. Mater. Lett.、Environ. Prog. Sustain、Instrum. Sci.& Technol.、Dry Technol.、Meas. & Contro.等学术刊物上发表论文80多篇;2012年3月获广东省科学技术奖二等奖(B030207R04),现为广东省“千百十”人才计划第八批支持人才。
引用本文:    
王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
WANG Ruiping, YUAN Changlong, TAO Jingsong. Modification of Cellulose Nanofibrils and Its Applicationin Flexible Electronics. Materials Reports, 2019, 33(17): 2949-2957.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17110242  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2949
1 Dai L, Long Z, Zhang D. <i>Journal of Materials Engineering</i>, 2015, 43(8), 84(in Chinese).<br />
戴磊, 龙柱,张丹. 材料工程, 2015, 43(8), 84.<br />
2 Masruchin N, Park B D, Causin V, et al.<i>Cellulose</i>, 2015, 22(3), 1993.<br />
3 Aulin C, Salazaralvarez G, Lindstr m T.<i>Nanoscale</i>, 2012, 4(20), 6622.<br />
4 Zhu X H, Wen Y B, Cheng D, et al.<i>Paper and Paper Making</i>, 2015,34(5), 25(in Chinese).<br />
朱旭海, 温洋兵, 程栋, 等. 纸和造纸, 2015, 34(5), 25.<br />
5 Saito T, Kimura S, Nishiyama Y, et al.<i>Biomacromolecules</i>, 2007, 8(8), 2485.<br />
6 Wen Y B, Zhu X H, Gauthier D E, et al.<i>Cellulose</i>, 2015, 22(4), 2499.<br />
7 Xie S X. Study on preparation and moclification of functional nanocrystal cellulose and its application. 's Thesis, Wuhan University of Technology, China, 2014 (in Chinese).<br />
谢绍祥. 功能纳米微晶纤维素的制备改性及其应用研究. 硕士学位论文, 武汉理工大学, 2014.<br />
8 Park M, Lee D, Shin S, et al.<i>Carbohydrate Polymers</i>, 2016, 140, 43.<br />
9 Sehaqui H, Mushi N E, Morimune S, et al. <i>ACS Applied Materials & Interfaces</i>, 2016, 4(2),1043.<br />
10 Jung Y H, Chang T H, Zhang H L, et al. <i>Nature Communications</i>, 2015, 6, 7170.<br />
11 Robles E, Csóka L, Labidi J. <i>Coatings</i>, 2018, 8(4), 139.<br />
12 Deng S, Ma J R, Guo Y L, et al.<i>Composites Science & Technology</i>, 2018, 157, 168.<br />
13 Zhu H L, Luo W, Ciesielski P N, et al.<i>Chemical Reviews</i>, 2016, 116(16), 9305.<br />
14 Fumagalli M, Sanchez F, Molina-Boisseau S, et al. <i>Cellulose</i>, 2015, 22(3), 1451.<br />
15 Afrin S, Karim Z.<i>ChemBioEng Reviews</i>, 2017, 4(5), 289.<br />
16 Wang Z H, Carlsson D O, Tammela P, et al.<i>ACS Nano</i>, 2015, 9(7), 7563.<br />
17 Pan R J, Xu X X, Sun R, et al.<i>Small</i>, 2018, 14(21), 1704371.<br />
18 Zhang J Q, Fujizawa S, Isogai A, et al. <i>Polymer Degradation & Stability</i>, 2014, 110, 529.<br />
19 He W, Li J P, Jin H, et al. <i>Journal of Nanjing Forestry University (Natural Sciences Edition)</i>, 2016, 40(2), 144(in Chinese).<br />
何文, 李吉平, 金辉, 等. 南京林业大学学报(自然科学版), 2016, 40(2), 144.<br />
20 Tan Y. Modification of waterborne acrylic composite coating with cellulose nanofibers coupling by silane coupling agent KH550. 's Thesis, Northeast Forestry University, China,2016 (in Chinese).<br />
谭瑶. 硅烷偶联剂KH550改性纳米纤维素及其增强水性丙烯酸复合涂料研究. 硕士学位论文,东北林业大学, 2016.<br />
21 Isogai A, Saito T, Fukuzumi H.<i>Nanoscale</i>, 2011, 3(1), 71.<br />
22 Saito T, Isogai A. <i>Colloids and Surfaces A-Physicochemical and Enginee-ring Aspects</i>,2006,289(1), 219.<br />
23 Okita Y, Fujisawa S, Saito T, et al. <i>Biomacromolecules</i>, 2011, 12(2), 518.<br />
24 Wu Q L, Mei C T, Han J Q, et al. <i>Journal of Forestry Engineering</i>, 2018, 3(1), 1(in Chinese).<br />
吴清林, 梅长彤, 韩景泉, 等. 林业工程学报, 2018, 3(1), 1.<br />
25 Laitinen O, Ojala J, Sirvi J A, et al. <i>Cellulose</i>, 2017, 24(4), 1679.<br />
26 Liu Y F, Wang H S, Yu G, et al.<i>Carbohydrate Polymers</i>, 2014, 110(1), 415.<br />
27 Chen L H, Zhu J Y, Baez C, et al. <i>RSC Green Chemistry</i>, 2016, 18(13), 3835.<br />
28 Sirvi J A, Visanko M, Liimatainen H.<i>Green Chemistry</i>, 2015, 17(6), 3401.<br />
29 Sirvi J A, Visanko M, Liimatainen H.<i>Biomacromolecules</i>, 2016, 17(9), 3025.<br />
30 Wagberg L, Decher G, Norgren M, et al. <i>Langmuir the ACS Journal of Surfaces & Colloids</i>, 2008, 24(3), 784.<br />
31 Janardhnan S, Sain M M.<i>Bioresources</i>, 2007, 1(2), 176.<br />
32 Cheng Z L. TEMPO-modification of nanocrystalline celllose and its improvements in pulp performence. 's Thesis, Qilu University of Technology, China, 2013 (in Chinese).<br />
程正亮. 纳米微晶纤维素的TEMPO改性及用于纸浆性能的改善. 硕士学位论文, 齐鲁工业大学, 2013.<br />
33 Liu Y, Ren X H.<i>Materials Review B:Research Papers</i>, 2015, 29(11), 133(in Chinese).<br />
刘颖, 任学宏. 材料导报:研究篇, 2015, 29(11), 133.<br />
34 Habibi Y. <i>Chemical Society Reviews</i>, 2014, 43(5), 1519.<br />
35 Wang K. Preparation and property study of oxidation cellulose acetate with C-6 carboxyl groups. 's Thesis, South China University of Techno-logy, China, 2013 (in Chinese).<br />
王凯. C-6氧化纤维素醋酸酯的制备及其性能研究. 硕士学位论文, 华南理工大学, 2013.<br />
36 Bulota M, Tanpichai S, Hughes M, et al. <i>ACS Applied Materials & Interfaces</i>, 2012, 4(1), 331.<br />
37 Laaksonen T, Helminen J K J, Lemetti L, et al. <i>Chemsuschem</i>, 2017, 10(24), 4879.<br />
38 Zhao Q. Research on the preparation and modification of cellulose nanocrystals and its application of reinforced composites. Ph.D. Thesis, Donghua University, China, 2014 (in Chinese).<br />
赵群. 纳米微晶纤维素的制备、改性及其增强复合材料性能的研究. 博士学位论文, 东华大学, 2014.<br />
39 Yuan H H, Nishiyama Y, Wada M, et al. <i>Biomacromolecules</i>,2006,7(3), 696.<br />
40 Wang W J, Cui X Y, Zhu H D, et al. <i>Acta Armamentarii</i>,2016, 37(2), 260(in Chinese).<br />
王文俊, 崔小月, 朱海东, 等. 兵工学报, 2016, 37(2),260.<br />
41 Fukuzumi H, Saito T, Okita Y, et al. <i>Polymer Degradation & Stability</i>, 2010, 95(9), 1502.<br />
42 Johnson R K, Zink-Sharp A, Glasser W G. <i>Cellulose</i>, 2011, 18(6), 1599.<br />
43 Rattaz A, Mishra S P, Chabot B, et al. <i>Cellulose</i>, 2011, 18(3), 585.<br />
44 Homma I, Fukuzumi H, Saito T, et al. <i>Cellulose</i>, 2013, 20(5), 2505.<br />
45 Zaman M, Xiao H N, Chibante F, et al. <i>Carbohydrate Polymers</i>, 2012,89(1), 163.<br />
46 Hasani M, Cranston E D, Westman G, et al. <i>Soft Matter</i>, 2008, 4(11), 2238.<br />
47 Tian C. Modification of nanocellulose and its enhancement for environmental response nanocomposites.Ph.D. Thesis, South China University of Technology, China, 2015 (in Chinese).<br />
田晨. 纳米纤维素改性及其增强环境响应复合材料的研究. 博士学位论文, 华南理工大学, 2015.<br />
48 Tang L R. Design,construction and application of functionalized cellulose nanocrystals in controlled drug delivery system. Ph.D. Thesis, Fujian Agriculture and Forestry University, China, 2013 (in Chinese).<br />
唐丽荣. 功能化纳米纤维素的设计、构建及其在药物缓控释中的应用研究. 博士学位论文, 福建农林大学, 2013.<br />
49 Roy D, Semsarilar M, Guthrie J T, et al. <i>Chemical Society Reviews</i>, 2009, 38(7), 2046.<br />
50 Liu R, Fu S Y .<i>Transactions of China Pulp and Paper</i>, 2017, 32(1), 32(in Chinese).<br />
刘瑞, 付时雨. 中国造纸学报, 2017, 32(1), 32.<br />
51 Melone L, Rossi B, Pastori N, et al. <i>Chempluschem</i>, 2015, 80(9), 1408.<br />
52 Fujisawa S, Saito T, Kimura S, et al. <i>Composites Science & Technology</i>, 2014, 90(90), 96.<br />
53 Kalia S, Boufi S, Celli A, et al. <i>Colloid & Polymer Science</i>, 2014, 292(1), 5.<br />
54 Cranston E D, Gray D G. <i>Biomacromolecules</i>, 2006, 7(9), 2522.<br />
55 Syverud K, Xhanari K, Chinga-Carrasco G, et al. <i>Journal of Nanoparticle Research</i>, 2011, 13(2), 773.<br />
56 Miao Y K, Chen J. <i>Communications Technology</i>, 2008, 41(4), 165(in Chinese).<br />
苗英恺, 陈佳. 通信技术, 2008, 41(4), 165.<br />
57 Liao Y J, Yu F F, Long L, et al. <i>Thin Solid Films</i>, 2011, 519(7), 2344.<br />
58 Yao Y G, Tao J S, Zou J H, et al. <i>Energy & Environmental Science</i>, 2016, 9(7), 2278.<br />
59 Chen J B. Design and preparation of new flexible high transparent paper material and its application research. 's Thesis, South China University of Technology, China, 2016(in Chinese).<br />
陈进波. 柔性高透明纸新材料的设计、制备及其应用研究. 硕士学位论文, 华南理工大学, 2016.<br />
60 Wang Q. Preparation and properties of cellulose nanofibers paper-based flexible electrochromic supercapacitors. 's Thesis, Beijing Institute of Technology, China, 2014(in Chinese).<br />
王茜. CNFs基柔性电致变色薄膜超级电容器制备及性能研究. 硕士学位论文, 北京理工大学, 2014.<br />
61 Okahisa Y, Yoshida A, Miyaguchi S, et al. <i>Composites Science & Technology</i>, 2009, 69(11), 1958.<br />
62 Li Q. Preparation and properties of cellulose nanofibers membrane mate-rial with high strength performace. 's Thesis, Northeast forestry university, China, 2013(in Chinese).<br />
李勍. 纤维素纳米纤丝高强度膜材料的制备与性能. 硕士学位论文, 东北林业大学, 2013.<br />
63 Yagyu H, Saito T, Isogai A, et al. <i>ACS Applied Materials & Interfaces</i>, 2015, 7(39), 22012.<br />
64 Hu L B, Zheng G Y, Yao J, et al. <i>Energy & Environmental Science, </i>2013 6(2), 513.<br />
65 Fang Z Q, Zhu H L, Yuan Y B, et al, <i>Nano Letters,</i> 2014, 14(2), 765.<br />
66 Ozkan M, Hashmi S G, Borghei M, et al. In: 32nd European Photovol-taic Solar Energy Conference and Exhibition.Munich, 2016, pp. 1353.<br />
67 Yoo J J, Balakrishnan K, Huang J S, et al. <i>Nano Letters</i>, 2011, 11(4), 1423.<br />
68 Nystr m G. Nanocellulose and polypyrrole composites for electrical energy storage.Ph.D. Thesis, Uppsala University, Sweden, 2012.<br />
69 Zheng W Z, Lv R, Na B, et al. <i>Journal of Materials Chemistry A</i>, 2017, 5(25), 12969.<br />
70 Zhu H L, Narakathu B B, Fang Z Q, et al.<i>Nanoscale</i>, 2014, 6(15), 9110.<br />
71 Nogi M, Komoda N, Otsuka K, et al. <i>Nanoscale</i>, 2013, 5(10), 4395.<br />
72 Fang Z Q, Zhu H L, Preston C, et al. <i>Journal of Materials Chemistry C</i>, 2013, 1(39), 6191.<br />
73 Zhu H L, Fang Z Q, Wang Z, et al. <i>ACS Nano</i>, 2016, 10(1),1369.<br />
74 Fujisaki Y, Koga H, Nakajima Y, et al. <i>Advanced Functional Materials</i>, 2014, 24(12), 1657.<br />
75 Huang J, Zhu H L, Chen Y C, et al. <i>ACS Nano</i>, 2013, 7(3), 2106.<br />
76 Tao J S, Fang Z Q, Zhang Q, et al.<i>Advanced Electronic Materials</i>, 2017, 3(5), 1600539.<br />
77 Sabo R, Seo J H, Ma Z Q. In: 2012 TAPPI International Conference on Nanotechnology for Renewable Materials. Canada, 2012, pp. 60.<br />
78 Li Y Y, Zhu H L, Shen F, et al. <i>Nano Energy</i>, 2015, 13, 346.<br />
79 Gao K Z, Shao Z Q, Wu X, et al. In: 2012 academic report of China's cellulose industry. Beijing, 2012, pp. 168.<br />
80 Nechyporchuk O, Belgacem M N, Pignon F. Cellulose, 2015, 22(4), 2197.<br />
81 Cui X Y. Preparation and modification and application in propellant of nanocellulose. 's Thesis,Beijing Institute of Technology, China, 2015(in Chinese).<br />
崔小月. 纳米纤维素的制备改性及其在发射药中的应用. 硕士学位论文, 北京理工大学, 2015.<br />
82 Conley K, Whitehead M A, Ven T G M V D. <i>Cellulose</i>, 2016, 23(3),1553.<br />
[1] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[2] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[3] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[4] 黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
[5] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[6] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[7] 敖晓辉, 邢书明, 李少乾, 韩青友, 王如芬. 杂质元素对铝硅合金Si相形核影响的探讨[J]. 材料导报, 2018, 32(15): 2647-2652.
[8] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed