Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1084-1087    https://doi.org/10.11896/j.issn.1005-023X.2018.07.006
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响
黄文成1,2, 张锦国1,2, 袁军1,2, 刘江文1,2
1 华南理工大学材料科学与工程学院,广州 510640;
2 广东省先进储能材料重点实验室,广州 510640
Effects of Structural Tuning on the Dehydrogenation Temperatures of Mg/Nb Composite Films
HUANG Wencheng1,2, ZHANG Jinguo1,2, YUAN Jun1,2, LIU Jiangwen1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640
下载:  全 文 ( PDF ) ( 3006KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用磁控溅射法制备了两组Mg/Nb复合薄膜,研究了不同Nb层厚度和不同基底温度对Mg/Nb复合薄膜脱氢温度的影响。结果表明,当Nb层厚度为1 nm和2 nm时,其催化效果相对最好,可使Mg/Nb复合薄膜的脱氢温度分别降至110 ℃和122 ℃。当基底温度为125 ℃时对脱氢性能的改善效果最佳,可使Mg(100 nm)/Nb(1 nm)复合薄膜的脱氢温度降至100 ℃。同时,讨论了Nb层厚度和基底温度对Mg/Nb复合薄膜脱氢温度的影响机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄文成
张锦国
袁军
刘江文
关键词:  Mg/Nb复合薄膜  储氢  Nb  基底温度  脱氢    
Abstract: Two groups of Mg/Nb composite films were prepared by magnetron sputtering. The effects of Nb layer thicknesses and substrate temperature of Mg/Nb composite films on the dehydrogenation temperatures were investigated. Results showed that the Nb layers with thicknesses of 1 nm and 2 nm exhibited the superior catalytic effects, which can lower the dehydrogenation temperatures to 110 ℃ and 122 ℃, respectively. Besides, the substrate temperature of 125 ℃ during sputtering presented the vastest enhancement to the dehydrogenation performance of Mg (100 nm)/Nb (1 nm) composite film. The dehydrogenation temperature could decrease to 100 ℃. Meanwhile, the relative mechanisms and the effects of Nb layer thicknesses and substrate temperatures of Mg/Nb composite thin films on their dehydrogenation temperatures were discussed.
Key words:  Mg/Nb composite film    hydrogen storage    Nb    substrate temperature    dehydrogenation
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG139+.7  
  TB34  
基金资助: 国家自然科学基金(51571091);广东省自然科学基金(2014A030313222)
通讯作者:  刘江文:通信作者,男,1966年生,博士,教授,主要从事储能材料方向的研究 E-mail:mejwliu@scut.edu.cn   
作者简介:  黄文成:男,1992年生,硕士研究生,研究方向为镁基储氢薄膜 E-mail:huangwc_scut@foxmail.com
引用本文:    
黄文成, 张锦国, 袁军, 刘江文. Mg/Nb复合薄膜的结构调控及其对脱氢温度的影响[J]. 《材料导报》期刊社, 2018, 32(7): 1084-1087.
HUANG Wencheng, ZHANG Jinguo, YUAN Jun, LIU Jiangwen. Effects of Structural Tuning on the Dehydrogenation Temperatures of Mg/Nb Composite Films. Materials Reports, 2018, 32(7): 1084-1087.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.006  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1084
1 Reilly Jr J J, Wiswall Jr R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4[J].Inorganic Chemistry,1968,7(11):2254.
2 Morinaga M, Yukawa H. Nature of chemical bond and phase stability of hydrogen storage compounds[J].Materials Science and Engineering:A,2002,329:268.
3 Reilly Jr J J, Wiswall Jr R H. Reaction of hydrogen with alloys of magnesium and copper[J].Inorganic Chemistry,1967,6(12):2220.
4 Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films[J].Applied Physics Letters,2007,90(2):021917.
5 Higuchi K, Yamamoto K, Kajioka H, et al. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films[J].Journal of Alloys and Compounds,2002,330:526.
6 Gharavi A G, Akyildiz H, Öztürk T. Thickness effects in hydrogen sorption of Mg/Pd thin films[J].Journal of Alloys and Compounds,2013,580:S175.
7 Ouyang L Z, Wang H, Zhu M, et al. Microstructure of MmM5/Mg multi-layer hydrogen storage films prepared by magnetron sputtering[J].Microscopy Research and Technique,2004,64(4):323.
8 Wang H, Ouyang L Z, Peng C H, et al. MmM 5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering[J].Journal of Alloys and Compounds,2004,370(1):L4.
9 Wang H, Ouyang L, Zeng M, et al. Microstructure and hydrogen sorption properties of Mg-Ni/MmM 5 multi-layer film by magnetron sputtering[J].International Journal of Hydrogen Energy,2004,29(13):1389.
10Shang C X, Bououdina M, Guo Z X. Structural stability of mechanically alloyed (Mg+10Nb) and (MgH2+10Nb) powder mixtures[J].Journal of Alloys and Compounds,2003,349(1):217.
11Tan X H, Wang L, Holt C M B, et al. Body centered cubic magne-sium niobium hydride with facile room temperature absorption and four weight percent reversible capacity[J].Physical Chemistry Chemical Physics,2012,14(31):10904.
12Liu T, Ma X, Chen C, et al. Catalytic effect of Nb nanoparticles for improving the hydrogen storage properties of Mg-based nanocomposite[J].The Journal of Physical Chemistry C,2015,119(25):14029.
13 Pelletier J F, Huot J, Sutton M, et al. Hydrogen desorption mechanism in MgH2-Nb nanocomposites[J].Physical Review B,2001,63(5):052103.
14 Klyukin K, Shelyapina M G, Fruchart D. Modelling of Mg/Ti and Mg/Nb thin films for hydrogen storage[J].Solid State Phenomena,2011,170:298.
15 Checchetto R, Bazzanella N, Miotello A, et al. Catalytic properties on the hydrogen desorption process of metallic additives dispersed in the MgH2 matrix[J].Journal of Alloys and Compounds,2007,446:58.
16 Huot J, Liang G, Boily S, et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride[J].Journal of Alloys and Compounds,1999,293:495.
17 Zaluska A, Zaluski L, Ström-Olsen J O. Nanocrystalline magne-sium for hydrogen storage[J].Journal of Alloys and Compounds,1999,288(1):217.
18 Ye Suyun. Effect of nanocrystallization on the thermodynamics and hydrogen storage properties of Mg-based hydrogen storage alloys[D].Guangzhou: South China University of Technology,2010(in Chinese).
叶素云.纳米化对Mg基储氢合金的热力学和储氢性能的影响[D].广州:华南理工大学,2010.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[3] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[4] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[5] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[6] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[7] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[8] 卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
[9] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[10] 周创, 蔡苇, 陈大凯, 杨蕊如, 章恒, 陈刚. Tm3+对AgNbO3反铁电陶瓷微结构和储能性能的影响[J]. 材料导报, 2023, 37(6): 21090143-6.
[11] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[12] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[13] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[14] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[15] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed