Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21100016-8    https://doi.org/10.11896/cldb.21100016
  金属与金属基复合材料 |
再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响
卢超1, 曹建春1,*, 陈伟2, 刘星1, 张永青3, 阴树标4
1 昆明理工大学材料科学与工程学院,昆明 650093
2 武钢集团昆明钢铁股份有限公司,昆明 650302
3 中信微合金化技术中心,北京 100004
4 昆明理工大学冶金与能源工程学院,昆明 650093
Effect of Reheating Temperature on Continuous Cooling Transformation, Microstructure and Properties of Nb Microalloyed Rebar
LU Chao1, CAO Jianchun1,*, CHEN Wei2, LIU Xing1, ZHANG Yongqing3, YIN Shubiao4
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Wugang Group Kunming Iron and Steel Co., Ltd., Kunming 650302, China
3 CITIC Microalloying Technology Center, Beijing 100004, China
4 College of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 42695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用热模拟试验机以再加热温度为1 000~1 100 ℃的条件对Nb微合金化钢筋形变奥氏体在不同冷却速率下的组织和相变规律进行研究,获得动态CCT曲线。研究结果表明,再加热温度的提高会降低铁素体相变温度,使珠光体、贝氏体相区向右移动。同时,再加热温度提高降低了铁素体组织的比例,使其硬度提高。在冷却速率小于2 ℃/s时,实验钢均得到均匀的铁素体+珠光体组织。不同实验条件下的析出相分析结果表明,由于再加热温度的提高有利于Nb的固溶,大颗粒未溶相含量降低,沉淀析出相尺寸减小、数量更多,有利于发挥沉淀强化作用,提高钢筋性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢超
曹建春
陈伟
刘星
张永青
阴树标
关键词:  再加热温度  CCT曲线  Nb微合金化钢筋  析出相    
Abstract: The microstructure and phase transformation of deformed austenite of Nb microalloyed rebar under different cooling rates were studied with a thermal simulation tester at reheating temperature of 1 000—1 100 ℃, and the dynamic CCT curve was obtained. The results show that the increase of reheating temperature can reduce the ferrite transformation temperature and move the pearlite bainite phase region to the right. Moreover, the increase of reheating temperature reduces the proportion of ferrite structure and improves its hardness. When the cooling rate was less than 2 ℃/s, the experimental steel obtained uniform ferrite + pearlite structure. The analysis results of precipitated phase under different experimental conditions show that the increase of reheating temperature is conducive to the solid solution of Nb, the content of insoluble phase in large particles is reduced, the size of precipitated phase is reduced, and the quantity is more, which is conducive to playing the role of precipitation strengthening and improving the properties of rebar.
Key words:  reheating temperature    CCT curve    Nb microalloyed rebar    precipitate
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51261009);云南省教育厅科学研究基金产业化培育项目(2016CYH07);中信CBMM铌钢研究与开发项目(R&D)
通讯作者:  *曹建春,昆明理工大学材料科学与工程学院教授、博士研究生导师。1990—1997年在昆明理工大学获得金属材料及其热处理专业学士学位和铸造专业硕士学位,2006年昆明理工大学与钢铁研究总院联合培养材料学专业博士毕业后到昆明理工大学工作至今。目前主要从事先进钢铁材料、微合金化技术、金属材料组织控制基础研究等方面的工作。在国内外公开刊物上发表学术论文120余篇,获得授权发明专利30余项。nmcjc@163.com   
作者简介:  卢超,2019年7月于安徽工业大学获得工学学士学位。现为昆明理工大学材料科学与工程学院硕博连读研究生,在曹建春教授的指导下进行研究。目前主要研究领域为微合金钢铁材料。
引用本文:    
卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
LU Chao, CAO Jianchun, CHEN Wei, LIU Xing, ZHANG Yongqing, YIN Shubiao. Effect of Reheating Temperature on Continuous Cooling Transformation, Microstructure and Properties of Nb Microalloyed Rebar. Materials Reports, 2023, 37(8): 21100016-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100016  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21100016
1 Feng L L, Wu K M, Li P P, et al. Journal of Iron and Steel Research, 2020, 32(1), 60 (in Chinese).
冯路路, 吴开明, 李萍萍, 等. 钢铁研究学报, 2020, 32(1), 60.
2 Chen S, Li L, Peng Z, et al. Journal of Materials Research and Technology, 2021, 10, 580.
3 Li C G, Zhou X G, Jiang X D, et al. Journal of Iron and Steel Research, 2021, 33(9), 987 (in Chinese).
李成刚, 周晓光, 蒋小冬, 等. 钢铁研究学报, 2021, 33(9), 987.
4 Pan H B, Wang Y, Yan J, et al. Journal of Building Materials, 2017, 20(3), 392 (in Chinese).
潘红波, 汪杨, 阎军, 等. 建筑材料学报, 2017, 20(3), 392.
5 Mao X P, Chen Q L, Sun X J, et al. Journal of Iron and Steel Research (International), 2014, 21(1), 30.
6 Wang Y, Li G Q, Liu Y L, et al. Materials Reports, 2022, 36(7), 20110126. (in Chinese).
汪勇, 李光强, 刘玉龙, 等. 材料导报, 2022, 36(7), 20110126.
7 Ye Y P. Study on technology, microstructure and properties of Nb microalloyed high strength anti-seismic rebar. Master's Thesis, Kunming University of Science and Technology, China, 2019 (in Chinese).
叶亚平. 铌微合金化高强度抗震钢筋工艺及组织性能的研究. 硕士学位论文, 昆明理工大学, 2019.
8 Li D. Study on reheating temperature and thermal deformation behavior of Nb microalloyed rebar. Master's Thesis, Kunming University of Science and Technology, China, 2014 (in Chinese).
李丹. 铌微合金化钢筋再加热温度及热变形行为研究. 硕士学位论文, 昆明理工大学, 2014.
9 Rezayat M, Mohebbi M S, Parsa M H, et al. Steel Research Internatio-nal, 2021, 92(4), 2000487.
10 Xin Z, Lei C. IOP Conference Series: Materials Science and Engineering, 2018, 392(2), 022019.
11 Ye Y P, Cao J C, Gao P, et al. Journal of Iron and Steel Research, 2019, 31(9), 830 (in Chinese).
叶亚平, 曹建春, 高鹏, 等. 钢铁研究学报, 2019, 31(9), 830.
12 He X L, Yang G W, Mao X P, et al. Acta Metallurgica Sinica, 2017, 53(6), 648 (in Chinese).
何仙灵, 杨庚蔚, 毛新平 等. 金属学报, 2017, 53(6), 648.
13 Wu D, Wan F, Cheng J, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(8), 892.
14 Wang B X, Xu X D, Liu X H, et al. Materials Science and Technology, 2005, 13(6), 572 (in Chinese).
王秉新, 徐旭东, 刘相华, 等. 材料科学与工艺, 2005, 13(6), 572.
15 Eghbali B, Abdollah-Zadeh A. Materials and Design, 2005, 28(3), 1021.
16 Wang A, Shi Y, Chen C. Materials Science and Technology, 2017, 33(16), 1942.
17 Zhang C, Zhai Q, Zheng L. Materials Science Forum, 2018, 4612, 149.
18 Zhang Z B, Liu Q Y, Zhang X B, et al. Journal of Iron and Steel Research, 2008, 20(10), 36 (in Chinese).
张志波, 刘清友, 张晓兵, 等. 钢铁研究学报, 2008, 20(10), 36.
19 Ye Y P, Cao J C, Gao P, et al. Journal of Iron and Steel Research, 2019, 31(9), 830 (in Chinese).
叶亚平, 曹建春, 高鹏, 等. 钢铁研究学报, 2019, 31(9), 830.
20 Li L, Zhou X D, Chen X W, et al. Transactions of Materials and Heat Treatment, 2020, 41(1), 138 (in Chinese).
李露, 周旭东, 陈学文,等. 材料热处理学报, 2020, 41(1), 138.
21 Yu P, Song R B, Xiong W M, et al. Materials Science Forum, 2021, 6114, 396.
22 Cao J C, Ye Y P, Yin S B, et al. Iron & Steel, 2019, 54(12), 81 (in Chinese).
曹建春, 叶亚平, 阴树标, 等. 钢铁, 2019, 54(12), 81.
23 Yang C F, Wu Q H, Chen Y, et al. Materials for Mechanical Enginee-ring, 2013, 37(3), 16 (in Chinese).
杨超飞, 吴庆辉, 陈颖, 等. 机械工程材料, 2013, 37(3), 16.
24 Liu C L, Cao J C, Zhou H, et al. Iron & Steel, 2019, 54(11), 101 (in Chinese).
刘铖霖, 曹建春, 周煌,等. 钢铁, 2019, 54(11), 101.
25 Mi Y F, Cao J C, Zhang Z Y, et al. Iron & Steel, 2012, 47(3), 84(in Chinese).
米永峰, 曹建春, 张正延, 等. 钢铁, 2012, 47(3), 84.
26 Yong Q L. Secondary phases in steels, Metallurgical Industry Press, China, 2006, pp. 320(in Chinese).
雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006, pp. 320.
27 Zhang K, Sun X J, Yong Q L, et al. Acta Metallurgica Sinica, 2015, 51(5), 553 (in Chinese).
张可, 孙新军, 雍岐龙,等. 金属学报, 2015, 51(5), 553.
28 Pan H B, Zhou L T, Zhang J, et al. Journal of Iron and Steel Research, 2017, 29(8), 660 (in Chinese).
潘红波, 周刘涛, 张建, 等. 钢铁研究学报, 2017, 29(8), 660.
29 Cao J C, Liu Q Y, Yong Q L, et al. Iron & Steel, 2006, 41(8), 60 (in Chinese).
曹建春, 刘清友, 雍岐龙, 等. 钢铁, 2006, 41(8), 60.
30 Pavlina E J, Tyne C J. Journal of Materials Engineering and Perfor-mance, 2008, 17(6), 888.
[1] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[2] 李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
[3] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[4] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[5] 阎勇, 李萌蘖, 卜恒勇, 郑善举. S34MnV钢的连续冷却转变行为及相变动力学研究[J]. 材料导报, 2021, 35(20): 20129-20136.
[6] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[7] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[8] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[9] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[10] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[11] 韩永强, 王宇斌, 陈旋, 吴晓春. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J]. 材料导报, 2019, 33(24): 4136-4140.
[12] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[13] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[14] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[15] 唐丽, 尹立孟, 王金钊, 刘成, 王学军. X80管线钢二次热循环的连续冷却转变行为及贝氏体相变动力学[J]. 材料导报, 2019, 33(18): 3119-3124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed