Effect of Reheating Temperature on Continuous Cooling Transformation, Microstructure and Properties of Nb Microalloyed Rebar
LU Chao1, CAO Jianchun1,*, CHEN Wei2, LIU Xing1, ZHANG Yongqing3, YIN Shubiao4
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Wugang Group Kunming Iron and Steel Co., Ltd., Kunming 650302, China 3 CITIC Microalloying Technology Center, Beijing 100004, China 4 College of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract: The microstructure and phase transformation of deformed austenite of Nb microalloyed rebar under different cooling rates were studied with a thermal simulation tester at reheating temperature of 1 000—1 100 ℃, and the dynamic CCT curve was obtained. The results show that the increase of reheating temperature can reduce the ferrite transformation temperature and move the pearlite bainite phase region to the right. Moreover, the increase of reheating temperature reduces the proportion of ferrite structure and improves its hardness. When the cooling rate was less than 2 ℃/s, the experimental steel obtained uniform ferrite + pearlite structure. The analysis results of precipitated phase under different experimental conditions show that the increase of reheating temperature is conducive to the solid solution of Nb, the content of insoluble phase in large particles is reduced, the size of precipitated phase is reduced, and the quantity is more, which is conducive to playing the role of precipitation strengthening and improving the properties of rebar.
卢超, 曹建春, 陈伟, 刘星, 张永青, 阴树标. 再加热温度对Nb微合金化钢筋连续冷却相变及组织与性能的影响[J]. 材料导报, 2023, 37(8): 21100016-8.
LU Chao, CAO Jianchun, CHEN Wei, LIU Xing, ZHANG Yongqing, YIN Shubiao. Effect of Reheating Temperature on Continuous Cooling Transformation, Microstructure and Properties of Nb Microalloyed Rebar. Materials Reports, 2023, 37(8): 21100016-8.
1 Feng L L, Wu K M, Li P P, et al. Journal of Iron and Steel Research, 2020, 32(1), 60 (in Chinese). 冯路路, 吴开明, 李萍萍, 等. 钢铁研究学报, 2020, 32(1), 60. 2 Chen S, Li L, Peng Z, et al. Journal of Materials Research and Technology, 2021, 10, 580. 3 Li C G, Zhou X G, Jiang X D, et al. Journal of Iron and Steel Research, 2021, 33(9), 987 (in Chinese). 李成刚, 周晓光, 蒋小冬, 等. 钢铁研究学报, 2021, 33(9), 987. 4 Pan H B, Wang Y, Yan J, et al. Journal of Building Materials, 2017, 20(3), 392 (in Chinese). 潘红波, 汪杨, 阎军, 等. 建筑材料学报, 2017, 20(3), 392. 5 Mao X P, Chen Q L, Sun X J, et al. Journal of Iron and Steel Research (International), 2014, 21(1), 30. 6 Wang Y, Li G Q, Liu Y L, et al. Materials Reports, 2022, 36(7), 20110126. (in Chinese). 汪勇, 李光强, 刘玉龙, 等. 材料导报, 2022, 36(7), 20110126. 7 Ye Y P. Study on technology, microstructure and properties of Nb microalloyed high strength anti-seismic rebar. Master's Thesis, Kunming University of Science and Technology, China, 2019 (in Chinese). 叶亚平. 铌微合金化高强度抗震钢筋工艺及组织性能的研究. 硕士学位论文, 昆明理工大学, 2019. 8 Li D. Study on reheating temperature and thermal deformation behavior of Nb microalloyed rebar. Master's Thesis, Kunming University of Science and Technology, China, 2014 (in Chinese). 李丹. 铌微合金化钢筋再加热温度及热变形行为研究. 硕士学位论文, 昆明理工大学, 2014. 9 Rezayat M, Mohebbi M S, Parsa M H, et al. Steel Research Internatio-nal, 2021, 92(4), 2000487. 10 Xin Z, Lei C. IOP Conference Series: Materials Science and Engineering, 2018, 392(2), 022019. 11 Ye Y P, Cao J C, Gao P, et al. Journal of Iron and Steel Research, 2019, 31(9), 830 (in Chinese). 叶亚平, 曹建春, 高鹏, 等. 钢铁研究学报, 2019, 31(9), 830. 12 He X L, Yang G W, Mao X P, et al. Acta Metallurgica Sinica, 2017, 53(6), 648 (in Chinese). 何仙灵, 杨庚蔚, 毛新平 等. 金属学报, 2017, 53(6), 648. 13 Wu D, Wan F, Cheng J, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(8), 892. 14 Wang B X, Xu X D, Liu X H, et al. Materials Science and Technology, 2005, 13(6), 572 (in Chinese). 王秉新, 徐旭东, 刘相华, 等. 材料科学与工艺, 2005, 13(6), 572. 15 Eghbali B, Abdollah-Zadeh A. Materials and Design, 2005, 28(3), 1021. 16 Wang A, Shi Y, Chen C. Materials Science and Technology, 2017, 33(16), 1942. 17 Zhang C, Zhai Q, Zheng L. Materials Science Forum, 2018, 4612, 149. 18 Zhang Z B, Liu Q Y, Zhang X B, et al. Journal of Iron and Steel Research, 2008, 20(10), 36 (in Chinese). 张志波, 刘清友, 张晓兵, 等. 钢铁研究学报, 2008, 20(10), 36. 19 Ye Y P, Cao J C, Gao P, et al. Journal of Iron and Steel Research, 2019, 31(9), 830 (in Chinese). 叶亚平, 曹建春, 高鹏, 等. 钢铁研究学报, 2019, 31(9), 830. 20 Li L, Zhou X D, Chen X W, et al. Transactions of Materials and Heat Treatment, 2020, 41(1), 138 (in Chinese). 李露, 周旭东, 陈学文,等. 材料热处理学报, 2020, 41(1), 138. 21 Yu P, Song R B, Xiong W M, et al. Materials Science Forum, 2021, 6114, 396. 22 Cao J C, Ye Y P, Yin S B, et al. Iron & Steel, 2019, 54(12), 81 (in Chinese). 曹建春, 叶亚平, 阴树标, 等. 钢铁, 2019, 54(12), 81. 23 Yang C F, Wu Q H, Chen Y, et al. Materials for Mechanical Enginee-ring, 2013, 37(3), 16 (in Chinese). 杨超飞, 吴庆辉, 陈颖, 等. 机械工程材料, 2013, 37(3), 16. 24 Liu C L, Cao J C, Zhou H, et al. Iron & Steel, 2019, 54(11), 101 (in Chinese). 刘铖霖, 曹建春, 周煌,等. 钢铁, 2019, 54(11), 101. 25 Mi Y F, Cao J C, Zhang Z Y, et al. Iron & Steel, 2012, 47(3), 84(in Chinese). 米永峰, 曹建春, 张正延, 等. 钢铁, 2012, 47(3), 84. 26 Yong Q L. Secondary phases in steels, Metallurgical Industry Press, China, 2006, pp. 320(in Chinese). 雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006, pp. 320. 27 Zhang K, Sun X J, Yong Q L, et al. Acta Metallurgica Sinica, 2015, 51(5), 553 (in Chinese). 张可, 孙新军, 雍岐龙,等. 金属学报, 2015, 51(5), 553. 28 Pan H B, Zhou L T, Zhang J, et al. Journal of Iron and Steel Research, 2017, 29(8), 660 (in Chinese). 潘红波, 周刘涛, 张建, 等. 钢铁研究学报, 2017, 29(8), 660. 29 Cao J C, Liu Q Y, Yong Q L, et al. Iron & Steel, 2006, 41(8), 60 (in Chinese). 曹建春, 刘清友, 雍岐龙, 等. 钢铁, 2006, 41(8), 60. 30 Pavlina E J, Tyne C J. Journal of Materials Engineering and Perfor-mance, 2008, 17(6), 888.