Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21060094-5    https://doi.org/10.11896/cldb.21060094
  金属与金属基复合材料 |
层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响
李帅贞1, 韩晓辉1, 吴来军2,3,*, 刘裕航3, 王鹏1, 宋晓国2,3, 檀财旺2,3
1 中车青岛四方机车车辆股份有限公司,山东 青岛 266111
2 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
3 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室,山东 威海 264209
Effect of Layer Arrangement on Microstructure and Mechanical Properties of 6005A Aluminum Alloy MIG Joints
LI Shuaizhen1, HAN Xiaohui1, WU Laijun2,3,*, LIU Yuhang3, WANG Peng1, SONG Xiaoguo2,3, TAN Caiwang2,3
1 CRCC Qingdao Sifang Co., Ltd., Qingdao 266111, Shandong, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
3 Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China
下载:  全 文 ( PDF ) ( 9197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了熔化极惰性气体保护焊 (MIG) 焊层道排布方式对6005A铝合金接头组织及力学性能的影响。首先,基于两层两道、两层三道、三层三道这三种层道排布方式得到了焊缝成形良好的10 mm厚6005A铝合金对接接头;然后,通过焊接热循环对比了热影响区(HAZ)的峰值温度,采用电子背散射衍射(EBSD)、透射电子显微镜(TEM)等研究了各个接头热影响区的组织转变;最后,通过硬度测试和拉伸试验等测试方法研究了各个接头的力学性能。结果表明,不同的层道排布方式使HAZ经历不同的焊接热循环而呈现不同的微观组织及力学性能,且位于HAZ的软化区是6005A铝合金多层多道MIG接头最薄弱部位。三层三道接头HAZ发生不完全再结晶,使晶粒呈现轧制态特征;两层两道HAZ发生完全再结晶,使晶粒呈现等轴化特征;两层三道接头HAZ晶粒再结晶程度介于两层两道和三层三道之间。热影响区强化相β″发生过时效是接头软化的主要原因。在三种层道排布方式中,三层三道接头的线能量最低、高温停留时间最短,故HAZ过时效程度最低,拉伸强度和硬度损失最少,其平均拉伸强度可达211 MPa,明显高于两层三道的183 MPa和两层两道的161 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李帅贞
韩晓辉
吴来军
刘裕航
王鹏
宋晓国
檀财旺
关键词:  6005A铝合金  多层多道焊  层道排布  析出相  接头软化    
Abstract: The effects of metal inert gas(MIG) welding layer and pass arrangements on the microstructure and mechanical properties of 6005A aluminum alloy joints were studied. High-quality butt joints were obtained with different welding layer arrangements, including two layer-two pass, two layer-three pass and three layer-three pass. The peak temperature of heat-affected zones (HAZ) was compared by welding thermal cycles, and the microstructure transformation in the heat-affected zones was studied by electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM). Moreover, the microhardness and tensile strength of welded joints were examined. The results indicate that the softening zone located in the HAZ is the weakest part of the 6005A aluminum alloy multi-layer and multi-pass MIG joint. Different microstructures and mechanical properties were obtained in the HAZ with different welding layer arrangements, through different welding thermal cycles. The rolled characteristic of grains was observed in incomplete recrystallization HAZ of the three-layer and three-pass welded joint, while equiaxed grains were obtained in the complete recrystallization HAZ of the two-layer and two-pass welded joint, and the recrystallization extent of grains in the HAZ of the two layer-three pass welded joint was between those of the three layer-three pass and two layer-two pass welded joints. Besides, the overaging of the HAZ strengthening phase β″ leads to joint softening. Among the three types of welding layer arrangements, the three-layer and three-pass welding joints has the lowest energy input and the shortest high-temperature residence time, resulting in the lowest degree of HAZ overaging as well as the lowest strength and hardness. In this case, the average tensile strength of three-layer and three-pass welding joints is 211 MPa, which is higher than that (183 MPa) of two-layer and two-pass welding joints and that (161 MPa) of two-layer and three-pass welding joints obviously.
Key words:  6005A aluminum alloy    multi-layer and multi-pass welding    layer arrangement    precipitate    joint softening
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TG444+.7  
基金资助: 基金项目:国家自然科学基金(52005132);山东省自然科学基金(ZR2019PEE038)
通讯作者:  *wulaijun0721@163.com   
作者简介:  李帅贞,高级工程师,中车青岛四方机车车辆股份有限公司分管工艺师,具有国际焊接工程师(IWE)及美标焊接检验师(CWI)资质。2010年7月毕业于西南交通大学材料成型与控制工程专业,获学士学位。主要从事高速列车铝合金先进焊接技术研发,在国内重要期刊发表论文10余篇,授权专利5项。
吴来军,在职博士,哈尔滨工业大学(威海)材料科学与工程学院工程师。2013年毕业于哈尔滨工业大学,获工学硕士学位。主要从事智能焊接及铝合金焊接方面的研究,在国内外重要期刊发表文章20余篇,授权发明专利10余项。作为项目负责人主持国家自然科学基金青年基金1项、山东省自然科学基金1项。
引用本文:    
李帅贞, 韩晓辉, 吴来军, 刘裕航, 王鹏, 宋晓国, 檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响[J]. 材料导报, 2022, 36(17): 21060094-5.
LI Shuaizhen, HAN Xiaohui, WU Laijun, LIU Yuhang, WANG Peng, SONG Xiaoguo, TAN Caiwang. Effect of Layer Arrangement on Microstructure and Mechanical Properties of 6005A Aluminum Alloy MIG Joints. Materials Reports, 2022, 36(17): 21060094-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060094  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21060094
1 Hadadzadeh A, Ghaznavi M M, Kokabi A H. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8), 2255.
2 Yan S H, Xing B B, Zhou H Y, et al. Materials Characterization, 2018, 144, 205.
3 Ren Z W, Luo B H, Zheng Y Y, et al. Materials Reports A: Review Papers, 2019, 33(9), 3072(in Chinese).
任智炜, 罗兵辉, 郑亚亚, 等. 材料导报:综述篇, 2019, 33(9), 3072.
4 Ji H, Deng Y L, Deng J F, et al. Transactions of the China Welding Institution, 2019, 40(5), 24(in Chinese).
吉华, 邓运来, 邓健峰, 等. 焊接学报, 2019, 40(5), 24.
5 Dong P,Li H M, Sun D Q, et al. Marerials & Design, 2013, 45, 524.
6 Cornacchia G, Cecchel S, Panvini A. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8), 2017.
7 Zhang J, Lei Z, Wang X Y. Transactions of the China Welding Institution, 2012, 33(8), 60(in Chinese).
张健, 雷振, 王旭友.焊接学报, 2012, 33(8), 60.
8 Jin X, Kang M, Xu Y J, et al. Nonferrous Metal Processing, 2021, 50(2), 23(in Chinese).
金鑫, 康铭, 徐玉君, 等. 有色金属加工, 2021, 50(2), 23.
9 Liu H B, Yang S L, Xie C, et al. Journal of Alloys and Compounds, 2018, 741, 188.
10 Gao Q W, Shu F Y, Peng H E, et al. Transactions of Nonferrous Merals Society of China, 2019, 29, 2496.
11 Lu H. Transactions of the China Welding Institution, 2015, 36(4), 75(in Chinese).
路浩. 焊接学报, 2015, 36(4), 75.
12 Yao Wei, Wang Zhimin, Li Hongwei, et al. Transactions of the China Welding Institution, 2011, 32(7), 21(in Chinese).
姚为, 王志敏, 李宏伟, 等. 焊接学报, 2011, 32(7), 21.
13 Yang W C, Wang M P, Sheng X F, et al. Acta Metallurgiga Sinica, 2010, 46(12), 1481(in Chinese).
杨文超, 汪明朴, 盛晓菲, 等. 金属学报, 2010, 46(12), 1481.
14 Lyu X C, Lei Z, Zhang J, et al. Transactions of the China Welding Institution, 2014, 35(8), 25(in Chinese).
吕晓春, 雷振, 张健, 等. 焊接学报, 2014, 35(8), 25.
15 Liu J X, Shen J, Li X W, et al.Materials Reports, 2021, 35(2), 2092(in Chinese).
刘敬萱, 沈健, 李锡武, 等. 材料导报, 2021, 35(2), 2092.
[1] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[2] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[3] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(Z2): 412-417.
[4] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[5] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[6] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[7] 郝时嘉, 陆政, 李国爱, 于娟. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(Z2): 389-393.
[8] 韩永强, 王宇斌, 陈旋, 吴晓春. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J]. 材料导报, 2019, 33(24): 4136-4140.
[9] 章小峰, 李家星, 万亚雄, 武学俊, 黄贞益. 低密度钢中有序析出相的研究进展[J]. 材料导报, 2019, 33(23): 3979-3989.
[10] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[11] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[12] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[13] 郑亚风, 李晓成, 吴日铭, 吴晓春. 钛对非调质塑料模具钢奥氏体晶粒长大规律的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 82-87.
[14] 何钦生,邹兴政,李方,李征,唐锐,赵安中,. 冷拉减面率对C形环用Inconel X-750丝材组织性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 100-106.
[15] 唐昌平, 李国栋, 刘文辉, 陈宇强, 刘筱, 李方伟. 析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 103-106.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed