Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 103-106    https://doi.org/10.11896/j.issn.1005-023X.2017.016.021
  材料研究 |
析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*
唐昌平1,2, 李国栋3, 刘文辉1,2, 陈宇强1,2, 刘筱1,2, 李方伟1,2
1 湖南科技大学材料科学与工程学院, 湘潭 411201;
2 高温耐磨材料及制备技术湖南省国防科技重点实验室, 湘潭 411201;
3 苏州热工研究院有限公司设备管理部, 深圳 518124
Effects of Precipitates on Compression Behavior of Mg-Gd-Y-Nd-Zr Alloy at Ambient Temperature
TANG Changping1,2, LI Guodong3, LIU Wenhui1,2, CHEN Yuqiang1,2, LIU Xiao1,2, LI Fangwei1,2
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
2 High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Xiangtan 411201;
3 Equipment Management Department, Suzhou Nuclear Power Research Institute Company Limited, Shenzhen 518124
下载:  全 文 ( PDF ) ( 2070KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用金相观察、硬度测试、扫描电镜观察、透射电镜观察及室温压缩等手段,研究了时效析出相对Mg-5.5Gd-3.0Y-1.0Nd-1.0Zr合金挤压棒材室温压缩性能的影响。结果表明:该合金具有优异的抗压性能,经225 ℃/12 h时效处理后,合金的抗压强度可达490 MPa,屈服强度可达325 MPa,总压缩应变为8.9%,优异的抗压强度主要归因于合金中与基体呈半共格关系的析出相β′;随着时效程度的进一步增加,合金进入过时效状态,在300 ℃下时效8 h后,合金中析出尺寸达微米级的平衡相β,并在晶界处形成宽度约2 μm的无沉淀析出带,使合金的强化效果减弱;断口分析表明,不同时效状态合金均以解理断裂为主,并在解理面之间以少量韧窝进行连接。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐昌平
李国栋
刘文辉
陈宇强
刘筱
李方伟
关键词:  Mg-Gd-Y-Nd-Zr合金  时效  析出相  室温压缩  断口分析    
Abstract: Effects of precipitates on compression behavior of Mg-5.5Gd-3.0Y-1.0Nd-1.0Zr at ambient temperature were investigated by optical microscopy (OM), hardness testing, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ambient temperature compression test. The results indicated that the compression property of the alloy was very excellent. After 225 ℃/12 h treated, the compressive strength of the alloy could achieve 490 MPa, the yield strength could achieve 325 MPa, and the total compressive strain could reach 8.9%. The excellent compressive strength was attributed to the β′ precipitate, which was semi-coherent with the magnesium matrix. The alloy became overage as the aging time prolonged. The micrometer scaled equilibrium β phase precipitated from the matrix after aged at 300 ℃ for 8 h. The precipitate free zone with width of about 2 μm was formed at the grain boundary, which weakened the strengthening effect. The fracture analysis indicated that cleavage fracture was the main fracture mode, and the cleavage planes were connected by a small amount of dimples.
Key words:  Mg-Gd-Y-Nd-Zr alloy    aging    precipitate    ambient temperature compression    fracture analysis
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG146.2+2  
基金资助: 湖南省自然科学基金(2016JJ5042)
作者简介:  唐昌平:男,1983年生,博士,讲师,主要研究方向为镁合金强韧化 E-mail:tcpswnu@163.com
引用本文:    
唐昌平, 李国栋, 刘文辉, 陈宇强, 刘筱, 李方伟. 析出相对Mg-Gd-Y-Nd-Zr合金室温压缩行为的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 103-106.
TANG Changping, LI Guodong, LIU Wenhui, CHEN Yuqiang, LIU Xiao, LI Fangwei. Effects of Precipitates on Compression Behavior of Mg-Gd-Y-Nd-Zr Alloy at Ambient Temperature. Materials Reports, 2017, 31(16): 103-106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.021  或          http://www.mater-rep.com/CN/Y2017/V31/I16/103
1 Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater Sci Eng A,2001,302(1):37.
2 Friedrich H E, Mordike B L. Magnesium technology: Metallurgy, design data, applications[M]. Berlin: Springer,2006.
3 Czerwinski F, Trojanova Z, Szaraz Z, et al. Magnesium alloys-design, processing and properties[M]. Rijeka, Croatia: InTech,2011.
4 Zhang L T, Zhang X B, Cui X P. Research progress on high tempe-rature creep resistance of rare earth magnesium alloy[J]. Mater Rev: Rev,2014,28(10):91(in Chinese).
张李铁, 张效宾, 崔晓鹏. 稀土镁合金抗高温蠕变性能的研究进展[J]. 材料导报: 综述篇,2014,28(10):91
5 Liu B Z, Fan Y P, Liu J J, et al. Research and development of heat resistant magnesium-heavy rare earth alloys[J]. Mater Rev: Rev,2012,26(6):110(in Chinese).
刘宝忠, 范燕平, 刘娇娇, 等. 重稀土耐热镁合金的研究现状及发展[J]. 材料导报: 综述篇,2012,26(6):110.
6 Rokhlin L L. Magnesium alloys containing rare earth metals: Structure and properties[M]. London: Taylor & Francis,2003.
7 He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250℃[J]. J Alloys Compd,2006,421(1-2):309.
8 Gao X, He S M, Zeng X Q, et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250℃[J]. Mater Sci Eng A,2006,431(1-2):322.
9 Zhang X M, Tang C P, Deng Y L, et al. Phase transformation in Mg-8Gd-4Y-Nd-Zr alloy[J]. J Alloys Compd,2011,509(21):6170.
10 Zheng J X, Xu X S, Zhang K Y, et al. Novel structures observed in Mg-Gd-Y-Zr during isothermal ageing by atomic-scale HAADF-STEM[J]. Mater Lett,2015,152:287.
11 Zheng J X, Li Z, Tan L D, et al. Precipitation in Mg-Gd-Y-Zr alloy: Atomic-scale insights into structures and transformations[J]. Mater Charact,2016,117:76.
12 Zheng K Y, Dong J, Zeng X Q, et al. Precipitation and its effect on the mechanical properties of a cast Mg-Gd-Nd-Zr alloy[J]. Mater Sci Eng A,2008,489(1-2):44.
13 Zheng K Y, Dong J, Zeng X Q, et al. Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy[J]. Mater Charact,2008,59(7):857.
14 Zhang Y, Wu Y J, Peng L M, et al. Microstructure evolution and mechanical properties of an ultra-high strength casting Mg-15.6Gd-1.8Ag-0.4Zr alloy[J]. J Alloys Compd,2014,615:703.
15 Zhang L, Gong M, Peng L M. Microstructure and strengthening mechanism of a thermomechanically treated Mg-10Gd-3Y-1Sn-0.5Zr alloy[J]. Mater Sci Eng A,2013,565:262.
16 Wen K, Liu K, Wang Z H, et al. Effect of microstructure evolution on mechanical property of extruded Mg-12Gd-2Er-1Zn-0.6Zr alloys[J]. J Magn Alloy,2015,3(1):23.
17 Li L, Zhang X. Hot compression deformation behavior and proces-sing parameters of a cast Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A,2011,528(3):1396.
18 Xia X S, et al. Characterization of hot deformation behavior of as-extruded Mg-Gd-Y-Zn-Zr alloy[J]. J Alloys Compd,2014,610:203.
19 Xiao H C, Jiang S N, Tang B, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Y-Zr alloy[J]. Mater Sci Eng A,2015,628:311.
20 Xia X S, Chen Q, Zhang K, et al. Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy[J]. Mater Sci Eng A,2013,587:283.
21 Xiao H C, Tang B, et al. Dynamic precipitation in a Mg-Gd-Y-Zr alloy during hot compression[J]. Mater Sci Eng A,2015,645:241.
22 Tang C P, Liu W H, Chen Y Q, et al. Effects of thermal treatment on microstructure and mechanical properties of a Mg-Gd-based alloy plate[J]. Mater Sci Eng A,2016,659:63.
[1] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[5] 周亮, 陈送义, 彭振凌, 张星临, 范淑敏, 昌江郁, 袁丁玲, 陈康华1,2,3. 微量Co对7056铝合金组织与腐蚀性能的影响[J]. 材料导报, 2019, 33(2): 314-320.
[6] 方文, 王海宾, 张朝磊, 王宏斌, 马晓艺. 预应力钢绞线用大规格82B盘条冬季时效期的系统控制[J]. 材料导报, 2019, 33(14): 2408-2412.
[7] 李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
[8] 安小雪, 李勇, 王福, 王昭东, 邸洪双. 气垫式预时效工艺对6016铝合金汽车板性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1300-1305.
[9] 唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
[10] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[11] 薛喜丽, 陈鑫, 李龙, 周德敬. Mn、Fe含量对3003铝合金铸锭均匀化行为的影响[J]. 材料导报, 2018, 32(22): 3913-3918.
[12] 唐昌平, 左国良, 刘文辉, 朱美韵, 李志云, 李权, 刘筱, 卢立伟. 挤压-T5态Mg-8Gd-4Y-Nd-Zr合金的动态冲击行为[J]. 《材料导报》期刊社, 2018, 32(14): 2437-2441.
[13] 万永强,胡小武,徐涛,李玉龙,江雄心. Cu/Sn37Pb/Cu钎焊接头界面微观结构及其剪切性能[J]. 《材料导报》期刊社, 2018, 32(12): 2003-2007.
[14] 鲍泥发,胡小武,徐涛. SnAgCu-xBi/Cu焊点界面反应及微观组织演化[J]. 《材料导报》期刊社, 2018, 32(12): 2015-2020.
[15] 贾志宏, 翁瑶瑶, 丁立鹏, 程韬, 刘莹莹, 刘庆. 铝合金中的Sn微合金化:强化作用及机制*[J]. CLDB, 2017, 31(9): 123-127.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed