Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 98-102    https://doi.org/10.11896/j.issn.1005-023X.2017.016.020
  材料研究 |
基于工业合金激光熔覆制备Fe基非晶涂层*
龚玉兵1, 王善林1, 张子阳1, 李宏祥2, 陈玉华1
1 南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063;
2 北京科技大学新金属材料国家重点实验室, 北京100083
Fabrication of Amorphous Coating by Laser Cladding Using Industrial-grade Fe-based Alloy
GONG Yubing1, WANG Shanlin1, ZHANG Ziyang1, LI Hongxiang2, CHEN Yuhua1
1 National Defence Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063;
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 1623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以FeCoCrMoCBY块体合金为熔覆材料,采用激光熔覆在低碳钢表面制备非晶涂层,探讨不同激光功率对涂层成形及组织的影响,通过显微硬度仪、电化学工作站测试涂层显微硬度及耐腐蚀性能。研究结果表明,其他参数不变,激光功率为17.6~20.8 W时,涂层成形良好,与基材呈典型冶金结合。随激光功率增加,涂层稀释率升高,裂纹倾向增大,非晶化程度降低。激光功率为17.6 W时,涂层主要由非晶组成,稀释率低于24.2%,结构致密,包括热影响区、熔合区和熔覆区;涂层平均显微硬度为1 330HV,约高于基材9倍,在 3.5% NaCl 溶液中的耐腐蚀性能明显优于316L不锈钢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚玉兵
王善林
张子阳
李宏祥
陈玉华
关键词:  激光熔覆  工业合金  Fe基非晶涂层  激光功率  组织特征    
Abstract: High-density amorphous coating with FeCoCrMoCBY bulk alloy as cladding material was fabricated by laser cladding on the surface of mild steel. The effect of different laser power on formation and microstructure of the coatings was discussed. The microhardness and corrosion resistance of the coating were tested by microhardness tester and electrochemical work station. The results show that the coatings of good formation and typically metallurgical bonding with the substrate is obtained,when laser power are changing from 17.6 W to 20.8 W with other parameter fixed. With the increase of laser power, the dilution rates go up, the tendency of cracks rise and the degree of amorphization decrease in the coating. When laser power is 17.6 W, the coating is mainly amorphous, the dilution rate is less than 24.2%, and the structure of the coating is dense, which includes heat affected zone, bon-ding zone and cladding zone. Moreover, the average microhardness of the coating is 1 330HV, which is about 9 times higher than the substrate. And the coating has more excellent corrosion resistance than 316L stainless steel in the 3.5% NaCl solution.
Key words:  laser cladding    industrial-grade alloy    Fe-based amorphous coating    laser power    microstructure characterization
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51461031);江西省教育厅基金(GJJ150733);江西省科技厅科技合作项目(20161BBH80031);北京市自然科学基金(2142022);江西省教育厅科技落地计划项目(KJLD14055)
通讯作者:  王善林:通讯作者,1977年生,博士,副教授,主要从事铁基非晶合金及涂层方面的研究 E-mail:slwang70518@nchu.edu.cn   
作者简介:  龚玉兵:1990年生,硕士研究生,主要从事铁基非晶涂层方面的研究 E-mail:983858346@qq.com
引用本文:    
龚玉兵, 王善林, 张子阳, 李宏祥, 陈玉华. 基于工业合金激光熔覆制备Fe基非晶涂层*[J]. 《材料导报》期刊社, 2017, 31(16): 98-102.
GONG Yubing, WANG Shanlin, ZHANG Ziyang, LI Hongxiang, CHEN Yuhua. Fabrication of Amorphous Coating by Laser Cladding Using Industrial-grade Fe-based Alloy. Materials Reports, 2017, 31(16): 98-102.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.020  或          https://www.mater-rep.com/CN/Y2017/V31/I16/98
1 Bakare M S, Voisey K T, Chokethawai K, et al. Corrosion beha-viour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10 [J]. J Alloys Compd,2012,527:210.
2 王一禾, 杨膺善. 非晶态合金 [M]. 北京:冶金工业出版社,1989:185.
3 Xie Wenshuo,Zhu Zhenghou.The preparations and soft magnetic properties of Fe73.4Cu1Nb3Si13.5B9Al0.1 nanocrystalline alloy[J].J Funct Mater,2016,47(1):1222(in Chinese).
谢文硕,朱正吼.Fe73.4Cu1Nb3Si13.5B9Al0.1纳米晶合金制备及其软磁性能[J].功能材料,2016,47(1):1222.
4 Li Juan,Wang Shanlin,Gong Yubing,et al.Processing optimization and microstructure of FeSiB amorphous coating by laser cladding[J]. Chinese J Lasers,2016,43(1):0103006(in Chinese)
李娟,王善林,龚玉兵,等.激光熔覆FeSiB非晶涂层工艺及组织[J].中国激光,2016,43(1):0103006.
5 Li R F, Li Z G, Zhu Y Y, et al. Structure and corrosion resistance properties of Ni-Fe-B-Si-Nb amorphous composite coatings fabricated by laser processing[J].J Alloys Compd,2013,580:327.
6 Zhu Y Y, Li Z G, Li R F,et al. High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating:Layered microstructure and properties[J]. Surf Coat Technol,2013,235:699.
7 Wang Y F, Lu Q L, Xiao L J, et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J].Rare Metal Mater Eng,2014,43(2):0274.
8 Ye X Y, Shin Y C.Synthesis and characterization of Fe-based amorphous composite by laser direct deposition[J]. Surf Coat Technol,2014,239:34.
9 Zhou S F, Huang Y J, Zeng X Y. Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding[J]. Appl Surf Sci,2009,255(20):8494.
10 Gong Yubing,Wang Shanlin,Chen Yuhua,et al.Forming and mechanical properties of FeSiB amorphous ribbon joint with laser wel-ding[J]. Chinese J Lasers,2016,43(3):0303001(in Chinese).
龚玉兵,王善林,陈玉华,等.FeSiB 非晶薄带激光焊焊缝成形及接头力学性能[J].中国激光,2016,43(3):0303001.
11 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater,2000,48(1):279.
12 Zhang Peilei,Yan Hua,Xu Peiquan,et al.Fe-Ni-B-Si-Nb amorphous and nanocrystalline composite coating prepared by laser cladding and remelting [J]. Chinese J Nonferrous Metals,2011,21(11):2846(in Chinese).
张培磊,闫华,徐培全,等.激光熔覆和重熔制备Fe-Ni-B-Si-Nb系非晶纳米晶复合涂层[J].中国有色金属学报,2011,21(11):2846.
13 Wang Bin, Zhou Cui, Zhu Jiaxiang, et al.Preparation and characteristics of paraffin microcapsule applied in building energy conversation[J]. J Funct Mater,2014,45(19):19070(in Chinese).
王斌,周翠,朱加祥,等.电弧堆焊铁基非晶/纳米晶复合涂层的组织及性能研究[J].功能材料,2014,45(19):19070.

14 Zhang S, Wu C L, Zhang C H.Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Optics Laser Technol,2016,84:23.
15 Zhou Zheng,et al.Effects of yttriumon the glass-forming ability and corrosion resistance of Fe50-xMo14Cr15C15-B6Yx amorphous alloys[J]. Trans Beijing Institute of Technology,2008,28(5):455.
16 Wang S L, Li H X, Yi S,et al. Effect of Cr contents in Fe-based bulk metallic glasses on the glass forming ability and the corrosion resistance[J]. Mater Chem Phys,2009,113:878.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[3] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[4] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[5] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[6] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[7] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[8] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[9] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[10] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[11] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[12] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[13] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[14] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[15] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed