Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 94-97    https://doi.org/10.11896/j.issn.1005-023X.2017.016.019
  材料研究 |
氢气气氛中热处理对Ni-W合金镀层组织和性能的影响*
谢蔚1, 张亚东1, 周琼宇1,2,3, 成祥1, 胡安伟1, 张路1
1 江西理工大学材料科学与工程学院, 赣州 341000;
2 上海大学材料科学与工程学院, 上海 200072;
3 江西省科学院应用物理研究所, 南昌 330029
Effect of Heat Treatment in Hydrogen Atmosphere on Microstructure and Properties of Ni-W Alloy Coating
XIE Wei1, ZHANG Yadong1, ZHOU Qiongyu1,2,3, CHENG Xiang1, HU Anwei1, ZHANG Lu1
1 School of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000;
2 College of Material Science and Engineering, Shanghai University, Shanghai 200072;
3 Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029
下载:  全 文 ( PDF ) ( 1270KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了在氢气气氛中,不同的热处理温度对Ni-W合金镀层表面状态、相结构及显微硬度和耐蚀性的影响。结果表明,镀态的Ni-W合金镀层存在一种未知相(2θ≈41.4°),热处理过程中这一未知相消失,同时镀层中析出NiW、Ni4W等沉淀相。随着热处理温度的升高,镀层的晶粒度逐渐增大,镀层在热处理过程中形成的孔隙逐渐增多。当热处理温度达到1 000 ℃后,镀层表面出现明显的裂纹,同时镀层中可还原形成单质W。Ni-W合金镀层的显微硬度经热处理后显著增大,热处理温度为500 ℃时镀层的显微硬度最大,同时镀层具有与镀态Ni-W合金相近的耐蚀性,热处理温度进一步升高后镀层的耐蚀性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢蔚
张亚东
周琼宇
成祥
胡安伟
张路
关键词:  Ni-W合金  镀层  氢气气氛  热处理  显微硬度  耐蚀性    
Abstract: The effect of annealing temperature on the morphology, phase composition, micro-hardness and corrosion resistance of Ni-W coating were investigated. The results show that an unidentified phase(2θ ≈41.4°) was presented in the as-plated Ni-W coating and then disappeared after annealing treatment. Meanwhile, NiW and Ni4W were precipitated in the annealed coating. As the annealing temperature increased, the grain size and porosity of coating gradually increased. Significant cracks were observed and W was found in the Ni-W coating annealed at 1 000 ℃.The micro-hardness of annealed Ni-W coatings were much higher than that of as-deposited coating, while an adverse corrosion performance was observed for the annealed Ni-W coatings. The corrosion resistance became worse with the increasing annealing temperature. The coating annealed at 500 ℃ showed a biggest micro-hardness value and a fairly acceptable corrosion resistance.
Key words:  Ni-W alloy    electrodeposited coating    hydrogen atmosphere    annealing treatment    micro-hardness    corrosion resistance
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG147  
基金资助: 国家自然科学基金(51504104);江西省自然科学基金(20151BAB216012;20161BAB206141);江西理工大学博士启动基金(jxxjbs15006)
通讯作者:  周琼宇:通讯作者,男,1986年生,博士,讲师,研究方向为金属腐蚀与防护和材料物理化学 E-mail:zhouzhouqiongyuxf@126.com   
作者简介:  谢蔚:男,1992年生,硕士研究生,研究方向为金属腐蚀与防护 E-mail:214939760@qq.com
引用本文:    
谢蔚, 张亚东, 周琼宇, 成祥, 胡安伟, 张路. 氢气气氛中热处理对Ni-W合金镀层组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 94-97.
XIE Wei, ZHANG Yadong, ZHOU Qiongyu, CHENG Xiang, HU Anwei, ZHANG Lu. Effect of Heat Treatment in Hydrogen Atmosphere on Microstructure and Properties of Ni-W Alloy Coating. Materials Reports, 2017, 31(16): 94-97.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.019  或          https://www.mater-rep.com/CN/Y2017/V31/I16/94
1 Li Z H,Sheng M Q,Zhong Q D,et al.Influence of surface roughness of matrix on chromium coatings on the surface of H13 steel[J].Chin J Mater Res,2010,24(5):455(in Chinese).
李振华, 盛敏奇, 钟庆东, 等. 基体表面粗糙度对 H13 钢板表面镀铬层的影响[J]. 材料研究学报,2010,24(5):455.
2 Liu Q Z,Zhang Y C,Liu Y H,et al.Research development of electrodeposited tungsten and tungsten alloys coating[J]. Mater Rev:Rev,2012,26(1):142(in Chinese).
刘其宗, 张迎春, 刘艳红, 等. 电沉积钨及钨合金涂层的研究进展[J]. 材料导报:综述篇,2012,26(1):142.
3 De Lima-Neto P, Correia A N, Santana R A C, et al. Morphological, structural, microhardness and electrochemical characterisations of electrodeposited Cr and Ni-W coatings[J]. Electrochim Acta,2010,55(6):2078.
4 Lammel P, Rafailovic L D, Kolb M, et al. Analysis of rain erosion resistance of electroplated nickel-tungsten alloy coatings[J]. Surf Coat Technol,2012,206(8):2545.
5 Alimadadi H, Ahmadi M, Aliofkhazraei M, et al. Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni-W alloy[J]. Mater Des,2009,30(4):1356.
6 Farzaneh M A, Raeissi K, Golozar M A. Effect of current density on deposition process and properties of nanocrystalline Ni-Co-W alloy coatings[J]. J Alloys Compd,2010,489(2):488.
7 Zhou Q Y,Wang X F,et al.Effect of pH value on structure and corrosion resistance of electrodeposited Ni-W alloy coating[J].J Chin Soc Corrosion Protection,2016,36(5):457(in Chinese).
周琼宇,王小芬,等. 镀液 pH值对电沉积 Ni-W合金镀层结构及其耐蚀性能的影响[J]. 中国腐蚀与防护学报,2016,36(5):457.
8 Panagopoulos C N, Plainakis G D, Lagaris D A. Nanocrystalline Ni-W coatings on copper[J]. Mater Sci Eng B,2011,176(6):477.
9 Sassi W, Dhouibi L, Berçot P, et al. Comparative study of protective nickel-tungsten deposit behavior obtained by continuous and pulsed currents from citrate-ammonia media[J]. Surf Coat Technol,2012,206(19):4235.
10 Zhang H,Guo Z C.Research on the hardness of pulse electrod epo-sited Ni-W-P alloy[J]. Surf Technol,2004,33(2):15(in Chinese).
张欢, 郭忠诚. 脉冲电沉积 Ni-W-P 合金镀层的硬度研究[J]. 表面技术,2004,33(2):15.
11 Capel H, Shipway P H, Harris S J. Sliding wear behaviour of electrodeposited cobalt-tungsten and cobalt-tungsten-iron alloys[J]. Wear,2003,255(7):917.
12 Li S,Guo R X,Bian J S,et al.Effects of annealing on corrosion and crystal of Ni-W-P coatings by chemical deposition[J].Surf Techonl,2011,40(5):9(in Chinese).
李莎, 郭荣新, 卞建胜, 等. 退火对化学镀 Ni-W-P 合金晶化及耐蚀性的影[J]. 表面技术,2011,40(5):9.
13 Sunwang N, Wangyao P, Boonyongmaneerat Y. The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings[J]. Surf Coat Technol,2011,206(6):1096.
14 Hou K H, Chang Y F, et al. The heat treatment effect on the structure and mechanical properties of electrodeposited nano grain size Ni-W alloy coatings[J]. Thin Solid Films,2010,518(24):7535.
15 Palaniappa M, Seshadri S K. Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings[J]. Wear,2008,265(5):735.
16 Juške·nas R, Valsiūnas I, et al. On the state of W in electrodeposited Ni-W alloys[J]. Electrochim Acta,2009,54(9):2616.
17 Juške·nas R, Valsiūnas I, Pakštas V, et al. XRD, XPS and AFM studies of the unknown phase formed on the surface during electrodeposition of Ni-W alloy[J]. Appl Surf Sci,2006,253(3):1435.
18 Nia N S, Creus J, Feaugas X, et al. Influence of metallurgical parameters on the electrochemical behavior of electrodeposited Ni and Ni-W nanocrystalline alloys[J]. Appl Surf Sci,2016,370:149.
19 Mizushima I, Tang P T, Somers M A J. Identification of an anomalous phase in Ni-W electrodeposits[J]. Surf Coat Technol,2008,202(14):3341.
20 Meng X, Shi X, Zhong Q, et al. Microstructure and corrosion resistance of electrodeposited Ni-Cu-Mo alloy coatings[J]. J Mater Eng Performance,2016,25(11):4735.
21 Sriraman K R, Raman S G S, Seshadri S K. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys[J]. Mater Sci Eng A,2007,460:39.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[6] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[7] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[8] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[9] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[10] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[11] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[12] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[13] 胥聪敏, 李雪丽, 朱文胜, 朱世东, 杨兴, 高豪然, 孙姝雯. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 23090099-6.
[14] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[15] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed