Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080239-11    https://doi.org/10.11896/cldb.23080239
  金属与金属基复合材料 |
增材制造金属材料在海洋环境下的耐蚀性能——综述
张勇1, 王斌斌1, 刘琛2, 李斌强1, 赵俊波3, 李志文1, 李哲1, 赵春志1, 王亮1,4,*, 苏彦庆1,4
1 哈尔滨工业大学材料科学与工程学院金属精密热加工国家重点实验室,哈尔滨 150001
2 哈尔滨工业大学空间环境与物质科学研究院,哈尔滨 150001
3 中国船舶集团有限公司第七○三研究所,哈尔滨 150036
4 哈尔滨工业大学郑州研究院,郑州 450000
Corrosion Resistance of Additively Fabricated Metal Materials in Marine Environments: a Review
ZHANG Yong1, WANG Binbin1, LIU Chen2, LI Binqiang1, ZHAO Junbo3, LI Zhiwen1, LI Zhe1, ZHAO Chunzhi1, WANG Liang1,4,*, SU Yanqing1,4
1 National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
3 No.703 Research Institute of China State Shipbuilding Company Limited, Harbin 150036, China
4 Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
下载:  全 文 ( PDF ) ( 32262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着金属增材制造技术在海洋工程领域的拓展应用,海水腐蚀成为增材制造构件需面临的重要问题。然而,金属增材制造的离散-堆积成型方式和材料的快速凝固特性,使得其制造的合金在微观组织上与常规合金有所不同,进而呈现出独特的腐蚀行为。针对奥氏体不锈钢、双相不锈钢、沉淀硬化马氏体不锈钢、铝合金(AlSi10Mg)和钛合金(Ti6Al4V)五种合金材料,重点讨论了粉末床熔融和定向能量沉积两类金属增材制造方法对合金的微观组织及海水耐蚀性的影响。同时,探讨了金属增材制造合金在应对海水腐蚀方面的热处理工艺,并与常规合金的耐蚀性进行了对比。最后,总结了相关研究成果及面临的挑战,展望了金属增材制造技术在海洋工程用金属材料领域的未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勇
王斌斌
刘琛
李斌强
赵俊波
李志文
李哲
赵春志
王亮
苏彦庆
关键词:  金属增材制造  海水耐蚀性  热处理  不锈钢  Ti6Al4V  AlSi10Mg    
Abstract: With the growing utilization of metal additive manufacturing technology in the field of marine engineering, the issue of seawater corrosion has emerged as a prominent concern for components produced through this innovative technology. Notably, the metal additive manufacturing alloys made of discrete-deposition forming method and rapid solidification characteristics have distinct microstructures which are different from those of conventional alloys, thereby present unique corrosion behaviors of these materials. This work is devoted to an in-depth exploration of five distinct alloy materials, specifically, austenitic stainless steel, duplex stainless steel, precipitation-hardened martensitic stainless steel, aluminum alloy (AlSi10Mg), and titanium alloy (Ti6Al4V). It emphatically discusses the profound influence of powder bed fusion and directed energy deposition methods on the microstructure and seawater corrosion resistance of these alloys. Moreover, it delves into heat treatment processes aimed at mitigating seawater corrosion in metal additive manufacturing alloys, and undertakes a comparative assessment of their corrosion resistance re-lative to that of conventional alloys. It also entails a summary on related research accomplishments, highlighted the prevailing challenges, and some insights into future prospects concerning the utilization of metal additive manufacturing technology within the field of metallic materials for marine engineering.
Key words:  metal additive manufacturing    corrosion resistance in seawater    heat treatment    stainless steel    Ti6Al4V    AlSi10Mg
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG171  
基金资助: 国家重点研发计划(2022YFF0609000);国家自然科学基金(52171034;52101037)
通讯作者:  * 王亮,哈尔滨工业大学材料科学与工程学院教授、博士研究生导师,国家重点研发计划项目首席科学家。2004年哈尔滨工业大学材料科学与工程学院材料成成型及控制工程专业本科毕业,2006年哈尔滨工业大学材料科学与工程学院材料加工工程专业硕士毕业,2010年哈尔滨工业大学材料科学与工程学院材料加工工程专业博士毕业。目前主要从事先进金属材料的熔炼凝固、液态氢化和增材制造等方面的研究工作。Wliang1227@hit.edu.cn   
作者简介:  张勇,2018年7月和2021年6月在山东理工大学分别获得工学学士学位和工程硕士学位。现为哈尔滨工业大学材料科学与工程学院博士研究生,在王亮教授的指导下进行研究。目前主要研究领域为增材制造、增材再制造和表面工程。
引用本文:    
张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
ZHANG Yong, WANG Binbin, LIU Chen, LI Binqiang, ZHAO Junbo, LI Zhiwen, LI Zhe, ZHAO Chunzhi, WANG Liang, SU Yanqing. Corrosion Resistance of Additively Fabricated Metal Materials in Marine Environments: a Review. Materials Reports, 2024, 38(23): 23080239-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080239  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080239
1 Xu Q, Jiang D, Zhou J, et al. Surface & Coatings Technology, 2023, 454, 129187.
2 Zhang D, Liu A, Yin B, et al. Journal of Manufacturing Processes, 2022, 73, 496.
3 Ghio E, Cerri E. Materials, 2022, 15, 2047.
4 Queguineur A, Ruckert G, Cortial F, et al. Welding in the World, 2018, 62(2), 259.
5 Li Y, Zhang B C, Qu X H. Chinese Journal of Engineering, 2022, 44(4), 573 (in Chinese).
李莹, 张百成, 曲选辉. 工程科学学报, 2022, 44(4), 573.
6 LalehM, Hughes A E, Xu W, et al. International Materials Reviews, 2021, 66(8), 563.
7 Dong C F, Kong D C, Zhang L, et al. Corrosion behavior and mechanism of additive manufacturing metals, Chemical Industry Press, China, 2023 (in Chinese).
董超芳, 孔德成, 张亮, 等. 增材制造金属的腐蚀行为与机理, 化学工业出版社, 2023.
8 Ornek C. Corrosion Engineering Science and Technology, 2018, 53(7), 531.
9 Zhang D, Liu A, Yin B, et al. Journal of Manufacturing Processes, 2022, 73, 496.
10 Aufa A N, Hassan M Z, Ismail Z. Journal of Alloys and Compounds, 2022, 896, 163072.
11 Revilla R I, Verkens D, Rubben T, et al. Materials, 2020, 13(21), 4840.
12 Zhao J, Dan Z, Sun Z, et al. Materials Engineering, 2023, 51(5), 1 (in Chinese).
招晶鑫, 淡振华, 孙中刚, 等. 材料工程, 2023, 51(5), 1.
13 Li X G. Corrosion behaviors and mechanisms of marine engineering materials, Chemical Industry Press, China, 2017, pp.85 (in Chinese).
李晓刚. 海洋工程材料腐蚀行为与机理, 化学工业出版社, 2017, pp.85.
14 Zhao M Q, He Y Y. Metal corrosion and protection, National Defense Industry Press, China, 2019, pp.123 (in Chinese).
赵麦群, 何毓阳. 金属腐蚀与防护, 国防工业出版社, 2019, pp.123.
15 Duan Z, Man C, Dong C, et al. Corrosion Science, 2020, 167, 108520.
16 Leon A, Levy G K, Ron T, et al. Additive Manufacturing, 2020, 33, 101039.
17 Song H, Sun L, Du J. Journal of Materials Engineering and Perfor-mance, 2022, 31, 953.
18 Bedmar J, Abu-warda N, Garcia-Rodriguez S, et al. Corrosion Science, 2022, 207, 110550.
19 Leon A, Aghion E. Materials Characterization, 2017, 131, 188.
20 Becker T H, Kumar P, Ramamurty U. Acta Materialia, 2021, 219, 117240.
21 Liu S, Li C, Jin X, et al. Additive Manufacturing, 2023, 73, 103689.
22 Chao Q, Cruz V, Thomas S, et al. Scripta Materialia, 2017, 141, 94.
23 Laleh M, Hughes A E, Xu W, et al. Corrosion Science, 2020, 165, 108412.
24 Cruz V, Chao Q, Birbilis N, et al. Corrosion Science, 2020, 164, 108314.
25 Kong D, Dong C, Ni X, et al. Journal of Materials Science & Technology, 2019, 35, 1499.
26 Kong D, Dong C, Ni X, et al. Applied Surface Science, 2020, 504, 144495.
27 Vignal V, Voltz C, Thiebaut S, et al. Journal of Materials Engineering and Performance, 2021, 30, 5050.
28 Bedmar J, Garcia-Rodriguez S, Roldan M, et al. Corrosion Science, 2022, 209, 110777.
29 Sander G, Thomas S, Cruz V, et al. Journal of the Electrochemical Society, 2017, 164(6), C250.
30 Sprouster D J, Cunningham W S, Halada G P, et al. Additive Manufacturing, 2021, 47, 102263.
31 Revilla R I, Calster M V, Raes M, et al. Corrosion Science, 2020, 176, 108914.
32 Zietala M, Durejko T, Polanski M, et al. Materials Science and Engineering: A, 2016, 677, 1.
33 Xu Q, Jiang D, Zhou J, et al. Surface & Coatings Technology, 2023, 454, 129187.
34 Bassis M, Ron T, Leon A, et al. Materials, 2022, 15, 5481.
35 Ron T, Dolev O, Leon A, et al. Materials, 2021, 14(1), 55.
36 Wen D X, Long P, Li J J, et al. Vacuum, 2020, 173, 109131.
37 Yang S F, Li C W, Chen A Y, et al. Journal of Manufacturing Processes, 2021, 65, 418.
38 Chen X, Li J, Cheng X, et al. Materials Science and Engineering: A, 2018, 715, 307.
39 Chen J, Xiao Q, Bae L H, et al. npj Materials Degradation, 2022, 6(1), 33.
40 Nie J, Wei L, Jiang Y, et al. Materials Today Communications, 2021, 26, 101648.
41 Williams D E, Kilburn M R, Cliff J, et al. Corrosion Science, 2010, 52(11), 3702.
42 Vukkum V B, Christudasjustus J, Darwish A A, et al. npj Materials Degradation, 2022, 6, 2.
43 Sun S H, Ishimoto T, Hagihara K, et al. Scripta Materialia, 2019, 159, 89.
44 Benarji K, Kumar Y R, Jinoop A N, et al. Metals and Materials International, 2021, 27, 488.
45 Cheng X, Wang Y, Li X, et al. Journal of Materials Science & Technology, 2018, 34, 2140.
46 Haghdadi N, Laleh M, Chen H, et al. Materials & Design, 2021, 212, 110260.
47 Laleh M, Haghdadi N, Hughes A E, et al. Corrosion Science, 2022, 198, 110106.
48 Freitas B J M, Rodrigues L C M, Claros C A E, et al. Journal of Alloys and Compounds, 2022, 918, 165576.
49 Nigon G N, Isgor O B, Pasebani S. Journal of the Electrochemical Society, 2020, 167, 141508.
50 Papula S, Song M, Pateras A, et al. Materials, 2019, 12(15), 2468.
51 Zhang Y, Cheng F, Wu S. Materials Characterization, 2020, 171, 110743.
52 Kannan A R, Shanmugam N S, Rajkumar V, et al. Materials Letters, 2020, 270, 127680.
53 Wen J H, Zhang L, Ning J, et al. Materials & Design, 2020, 192, 108710.
54 Haghdadi N, Cizek P, Hodgson P D, et al. Journal of Materials Science, 2020, 55, 5322.
55 Davidson K P, Singamneni S B. Rapid Prototyping Journal, 2017, 23(6), 1146.
56 Zhang X, Wang K, Zhou Q, et al. Materials Science and Engineering: A, 2019, 762, 138097.
57 Zhang Y, Cheng S, Wu S, et al. Journal of Materials Processing Techno-logy, 2020, 277, 116471.
58 Barroux A, Ducommun N, Nivet E, et al. Corrosion Science, 2020, 169, 108594.
59 Leo P, Nobile R, Barreiro J, et al. Optics and Laser Technology, 2022, 156, 108547.
60 Barroux A, Duguet T, Ducommun N, et al. Surface and Interfaces, 2021, 22, 100874.
61 Stoudt M R, Ricker R E, Lass E A, et al. JOM, 2017, 69(3), 506.
62 Shoemaker T K, Harris Z D, Burns J T. Corrosion, 2022, 78(6), 528.
63 Avula I, Arohi A C, Kumar C S, et al. Journal of Materials Engineering and Performance, 2021, 30, 6924.
64 Sarkar S, Mukherjee S, Cheruvu K, et al. Journal of Manufacturing Processes, 2020, 50, 279.
65 Bhaduri A K, Gill T P S, Srinivasan G, et al. Science and Technology of Welding and Joining, 2013, 4, 295.
66 Hsu T H, Chang Y J, Huang C Y, et al. Journal of Alloys and Compounds, 2019, 803, 30.
67 Le Z, Zhang C, Wang Y, et al. Metals, 2020, 10(2), 255.
68 Facchini L, Vicente N, Lonardelli I, et al. Advanced Engineering Materials, 2010, 12(3), 184.
69 Rafi H K, Pal D, Patil N. et al. Journal of Materials Engineering and Performance, 2014, 23, 4421.
70 Stoudt M R, Campbell C E, Ricker R E. Materialia, 2022, 22, 101435.
71 Ho Y H, Mazumder S, Pantawane M V, et al. Advanced Engineering Materials, 2022, 24, 2100938.
72 Cecchel S, Ferrario D, Cornacchia G, et al. Advanced Engineering Materials, 2020, 22, 2000359.
73 Leon A, Levy G K, Ron T, et al. Journal of Materials Research and Technology, 2020, 9(3), 4097.
74 Ettefagh A H, Zeng C, Guo S, et al. Additive Manufacturing, 2019, 28, 252.
75 Qian C, Xu H, Zhong Q. Journal of Laser Applications, 2020, 32, 032010.
76 Dai N, Zhang L C, Zhang J, et al. Corrosion Science, 2016, 102, 484.
77 Dai N, Zhang L C, Zhang J, et al. Corrosion Science, 2016, 111, 703.
78 Yang J, Yang H, Yu H, et al. Metallurgical and Materials Transactions A, 2017, 48A, 3583.
79 Leon A, Levy G K, Ron T, et al. Additive Manufacturing, 2020, 33, 101039.
80 Seo D I, Lee J B. Journal of the Electrochemical Society, 2020, 167(10), 101509.
81 Seo D I, Lee J B. Journal of the Electrochemical Society, 2019, 166(13), C428.
82 Ding X, Ma H, Zhang Q, et al. Journal of Alloys and Compounds, 2022, 914, 165363.
83 Wu B, Pan Z, Li S, et al. Corrosion Science, 2018, 137, 176.
84 Pazhanivel B, Sathiya P, Muthuraman K, et al. Engineering Failure Analysis, 2021, 127, 105515.
85 Jesus J S, Borrego L P, Ferreira J A M, et al. Engineering Failure Analysis, 2020, 118(1), 104852.
86 Li J, Yang Y, Zhu G, et al. Materials, 2022, 15, 3642.
87 Shalnova S A, Gushchina M O, Strekalovskaya D A, et al. Journal of Alloys and Compounds, 2022, 899, 163226.
88 Metalnikov P, Ben-Hamu G, Eliezer D. Progress in Additive Manufactu-ring, 2022, 7, 509.
89 Laleh M, Sadeghi E, Revilla R I, et al. Progress in Materials Science, 2023, 133, 101051.
90 Revilla R I, Terryn H, De G I. Corrosion Science, 2022, 203, 110352.
91 Fathi P, Mohammadi M, Duan X, et al. Journal of Materials Processing Technology, 2018, 259, 1.
92 Girelli L, Tocci M, Conte M, et al. Materials and Corrosion, 2019, 70, 1808.
93 Fathi P, Rafieazad M, Duan X, et al. Corrosion Science, 2019, 157, 126.
94 Revilla R I, Liang J, Godet S, et al. Journal of the Electrochemical Society, 2017, 164(2), C27.
95 Rubben T, Revilla R I, Graeve I D. Corrosion Science, 2019, 147, 406.
96 Rafieazad M, Mohammadi M, Nasiri A M. Additive Manufacturing, 2019, 28, 107.
97 Ylmaz M S, Zer G, Ter Z A, et al. Rapid Prototyping Journal, 2021, 27(5), 1059.
98 Damborenea J D, Conde A, Gardon M, et al. Journal of Materials Research and Technology, 2022, 18, 5325.
99 Cabrini M, Calignano F, Fino P, et al. Materials, 2018, 11(7), 1051.
[1] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[2] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[3] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[4] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[5] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[6] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[7] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[8] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[9] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[10] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[11] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[12] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[13] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[14] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[15] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed