Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22120065-7    https://doi.org/10.11896/cldb.22120065
  金属与金属基复合材料 |
耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展
吕润涛1, 周张健1,*, 白冰2, 杨文2
1 北京科技大学材料科学与工程学院,北京 100083
2 中国原子能科学研究院,北京 102413
Research Progress on the Control of Nano-precipitated and Reversed Austenite in Thermal Aging Resistant Maraging Stainless Steel
LYU Runtao1, ZHOU Zhangjian1,*, BAI Bing2, YANG Wen2
1 School of Materials Science and Engineering, University of Science & Technology Beijing, Beijing 100083, China
2 China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 12897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 马氏体时效不锈钢通过中温时效可析出高数密度超细纳米级析出相,使其获得高强度和一定的韧性。但是,当马氏体时效不锈钢在中低温下长期服役时,由于富Cu相、NiAl相等析出强化相的粗化及Fe-Cr基体调幅分解形成脆性富Cr相等,其延展性和冲击性能大幅降低,出现明显的热老化脆化问题,给服役安全性带来隐患。通过适当降低铬含量和析出元素含量、提高镍含量可有效抑制析出强化相的粗化及脆性相的析出。若进一步通过成分设计和热处理调控获得适量的逆变奥氏体,可望有效改善其热老化脆化问题。本文介绍了马氏体时效不锈钢的成分设计原则、析出相特点及其热稳定性对热老化脆化的影响,综述了有利于提高组织热老化稳定性的马氏体时效不锈钢中纳米析出强化相和逆变奥氏体的调控方法,为新型耐老化马氏体时效不锈钢的成分设计和制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕润涛
周张健
白冰
杨文
关键词:  马氏体时效不锈钢  纳米析出相  逆变奥氏体  热老化    
Abstract: Maraging stainless steels achieve ultra-high strength, high toughness and excellent corrosion resistance by precipitating of ultra-fine nanoscale strengthen phases formed by short time intermediate aging, which can be used in nuclear energy, aerospace and other high-tech fields. However, when it works for a long time at medium and low temperature, its ductility and impact properties will be reduced sharply due to the coarsening of precipitation strengthening phases such as Cu rich phase and NiAl, as well as the formation of brittle Cr rich phase due to the amplitude modulation decomposition of Fe-Cr matrix. This obvious thermal aging and embrittlement problems leads to a hidden danger for service safety. It is important to reduce the coarsening of precipitated phases and the forming of brittle phases through optimal composition design and heat treatment, such as reducing the chromium and precipitated element content, increasing the nickel content. Furthermore, it is reported that reversed austenite can improves the plastic toughness of maraging stainless steels, which is expected to improve the thermal aging embrittlement problem. The amount of reversed austenite also can be controlled by composition design and post heat treatment. In this paper, the composition design principle and typical precipitated phase of martensite aging stainless steel are introduced. The control methods of nano precipitated strengthening phase with high thermal stability and the formation of reversed austenite in martensite aging stainless steel which are benefit for improving thermal aging resistance are focused on. It is expected that this review paper can provide a reference for the composition design and preparation of new types of aging resistant martensite aging stainless steel.
Key words:  maraging stainless steel    nano-precipitation phase    reversed austenite    thermal aging
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG142.71  
基金资助: 国家自然科学基金(52001330)
通讯作者:  *周张健,北京科技大学材料学院教授、博士研究生导师。1996年在中国地质大学(北京)矿物学专业获硕士学位,2007年在北京科技大学材料学专业获博士学位。主要从事能源系统用先进材料的研究,出版教材2部,发表论文200余篇,授权专利12项。zhouzhj@mater.ustb.edu.cn   
作者简介:  吕润涛,2020年6月毕业于河北工业大学,获得工学学士学位。现为北京科技大学材料科学与工程专业硕士研究生,在周张建教授的指导下进行研究。目前主要研究领域为沉淀硬化马氏体不锈钢。
引用本文:    
吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
LYU Runtao, ZHOU Zhangjian, BAI Bing, YANG Wen. Research Progress on the Control of Nano-precipitated and Reversed Austenite in Thermal Aging Resistant Maraging Stainless Steel. Materials Reports, 2024, 38(4): 22120065-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120065  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22120065
1 Jiao Z B, Luan J H, Miller M K, et al. Materials Today, 2017, 20(3), 142.
2 Lo K H, Shek C H, Lai J K L. Materials Science and Engineering R: Reports, 2009, 65(4-6), 39.
3 Xiong Z P, Timokhina I, Pereloma E. Progress in Materials Science, 2021, 118, 100764.
4 Yeli G, Auger M A, Wilford K, et al. Acta Materialia, 2017, 125, 38.
5 Daymond B T, Binot N, Schmidt M L, et al. Journal of Materials Engineering and Performance, 2016, 25, 1539.
6 Wang L, Dong C F, Yao J Z, et al. Corrosion Science, 2019, 154, 178.
7 Ghaffari M, Nemani A V, Nasiri A. Additive Manufacturing, 2022, 49, 102374.
8 Chen C Y, Chiu P H, Liu W S, et al. Materials Science and Enginee-ring: A, 2022, 839, 142852.
9 Kuehmann C, Tufts B, Trester P. Advanced Materials and Processes, 2008, 166(1), 37.
10 Huang C Y, Yen H W. Materials Characterization, 2021, 178, 111216.
11 Wang Z M, Li H, Shen Q, et al. Acta Materialia, 2018, 156, 158.
12 Zhou T, Faleskog J, Babu R P, et al. Materials Science and Enginee-ring: A, 2019, 745, 420.
13 Leitner H, Schober M, Schnitzer R, et al. Materials Science and Engineering: A, 2011, 528(15), 5264.
14 Li Y C, Yan W, Cotton J D, et al. Materials & Design, 2015, 82, 56.
15 Bai B, Hu R, Zhang C Y, et al. Annals of Nuclear Energy, 2021, 154, 108123.
16 Sha W, Leitner H, Guo Z, et al. Phase Transformations in Steels, 2012, 6(5), 332.
17 Yang K, Niu M, Tian J, et al. Acta Metallurgica Sinica, 2018, 54(11), 1567 (in Chinese).
杨柯, 牛梦超, 田家龙, 等. 金属学报, 2018, 54(11), 1567.
18 Yang Z, Liu Z, Liang J, et al. Transactions of Materials and Heat Treatment, 2008, 29(4), 1 (in Chinese).
杨志勇, 刘振宝, 梁剑雄 等. 材料热处理学报, 2008, 29(4), 1.
19 Carter C S, Farwick D G, Ross A M, et al. Corrosion, 1971, 27, 190.
20 Bridge J E, Maniar G N. Metallography as a quality control tool, Springer, 1980, pp. 279.
21 Chen C Y, Chiu P H, Yang Y L, et al. Materials Today Communications, 2022, 31, 103454.
22 Kern C, Kooy R. Fastener Technology International, 2010, 33(1), 68.
23 Part C J, Kwon H S. Corrosion Science, 2002, 44(12), 2817.
24 Du Y B, Hu X F, Zhang S Q, et al. Materials Characterization, 2022, 190, 112014.
25 Shen Q, Xiong X Y, Li T, et al. Materials Science and Engineering: A, 2018, 723, 279.
26 Xu S S, Zhao Y, Chen D, et al. International Journal of Plasticity, 2019, 113, 99.
27 Zhang Z W, Liu C T, Miller M K, et al. Scientific Reports, 2013, 3, 1327.
28 Jiao Z B, Luan J H, Miller M K, et al. Acta Materialia, 2015, 84, 283.
29 Jiang S H, Wang H, Wu Y, et al. Nature, 2017, 544, 460.
30 Niu M C, Zhou G, Wang W, et al. Acta Materialia, 2019, 179, 296.
31 Schwich H, Görzen D, Blinn B, et al. Materials Science and Enginee-ring: A, 2020, 772, 138807.
32 Hsiao C N, Chiou C S, Yang J R. Materials Chemistry and Physics, 2002, 74(2), 134.
33 Habibi-Bajguirani H R. Materials Science and Engineering: A, 2002, 338(1-2), 142.
34 Habibi H R. Materials Letters, 2005, 59(14-15), 1824.
35 Mirzadeh H, Najafizadeh A. Materials Chemistry and Physics, 2009, 116(1), 119.
36 Matlack K H, Bradley H A, Thiele S, et al. NDT & E International, 2015, 71, 8.
37 Yan Q, Yan L C, Pang X L, et al. Corrosion Science, 2022, 205, 110416.
38 Zhou T, Babu R P, Odqvist J, et al. Materials & Design, 2018, 143, 141.
39 Jiang M K, Han Y, Sun J P, et al. Materials & Design, 2022, 221, 110977.
40 Rong X Q, Guo H, Enomoto M, et al. Materials Letters, 2021, 284(2), 128938.
41 Wang H Y, Gao X Y, Chen S M, et al. Journal of Alloys and Compounds, 2020, 846, 156386.
42 Li T, Xiong X Y, Shen Q, et al. Materials Research Experss, 2019, 6, 106510.
43 Zhang C, Enomoto M. Acta Materialia, 2006, 54(16), 4183.
44 Huang D Y, Yan J C, Zou X W. Materials Characterization, 2019, 155, 109786.
45 Wen Y R, Hirata A, Zhang Z W, et al. Acta Materialia, 2013, 61(6), 2133.
46 Hofinger M, Turk C, Ognianov M, et al. Materials Characterization, 2020, 160, 110126.
47 Wang X J, Sha G, Shen Q, et al. Materials Science and Engineering: A, 2015, 627, 340.
48 Schnitzer R, Schober M, Zinner S, et al. Acta Materialia, 2010, 58(10), 3733.
49 Hättestrand M, Nilsson J O, Stiller K, et al. Acta Materialia, 2004, 52(4), 1023.
50 Stiller K, Danoix F, Hättestrand M. Materials Science and Engineering: A, 1998, 250(1), 22.
51 Stiller K, Hättestrand M, Danoix F. Acta Materialia, 1998, 46(17), 60633.
52 Andersson M, Stiller K, Hättestrand M. Surface and Interface Analysis, 2007, 39, 195.
53 Niu M C, Yang K, Luan J H, et al. Journal of Materials Science & Technology, 2022, 104, 52.
54 Höring S, Wanderka N, Banhart J. Ultramicroscopy, 2009, 109(5), 574.
55 Leitner H, Schnitzer R, Schober M, et al. Acta Materialia, 2011, 59(12), 5012.
56 Jiang S H, Xu X Q, Li W, et al. Acta Materialia, 2021, 213, 116984.
57 Guo Z, Sha W, Vaumousse D. Acta Materialia, 2003, 51(1), 101.
58 Ping D H, Ohnuma M, Hirakawa Y, et al. Materials Science and Engineering: A, 2005, 394(1-2), 285.
59 Schnitzer R, Radis R, Nöhrer M, et al. Materials Chemistry and Physics, 2010, 122(1), 138.
60 Sun L, Simm T H, Martin T L, et al. Acta Materialia, 2018, 149, 285.
61 Ifergane S, Pinkas M, Barkay Z, et al. Materials Characterization, 2017, 127, 129.
62 Yang Z, Liu Z B, Liang J X, et al. Corrosion Science, 2021, 182, 109260.
63 Zhang C, Wang C, Zhang S L. et al. Materials Science and Engineering: A, 2021, 806, 140763.
64 Niu M C, Yin L C, Yang K, et al. Acta Materialia, 2021, 209, 116788.
65 Schober M, Schnitzer R, Leitner H. Ultramicroscopy, 2009, 109(5), 553.
66 Tian J L, Wang W, Yan W, et al. Materials, 2017, 10(11), 1293.
67 Tian J L, Chen K, Li H B, et al. Materials Science and Engineering: A, 2022, 833, 142529.
68 Tawancy H M. Journal of Materials Science, 1996, 31, 3929.
69 Verdiere A, Hofer C, Bliznuk V, et al. Materials Characterization, 2017, 131, 21.
70 Lach T G, Devaraj A, Leonard K J, et al. Journal of Nuclear Materials, 2018, 510, 382.
71 Couturier L, Geuser F D, Deschamps A. Materialia, 2020, 9, 100634.
72 Stiller K, Andrén H O, Andersson M. Materials Science and Technology, 2008, 24(6), 633.
73 Thuvander M, Andersson M, Stiller K. Materials Science and Technology, 2012, 28(6), 695.
74 Lach T G, Collins D A, Byun T S. Journal of Nuclear Materials, 2021, 557, 153268.
75 Badyka R, Saillet S, Emo J, et al. Journal of Nuclear Materials, 2021, 555, 153123.
76 Li X F, Zhang J, Chen J, et al. Materials Science and Engineering: A, 2016, 651, 474.
77 Schnitzer R, Zickler G A, Lach E, et al. Materials Science and Enginee-ring: A, 2010, 527(7-8), 2065.
78 Zhang H L, Ji X, Ma D P, et al. Journal of Materials Research and Technology, 2021, 11, 98.
79 Li Y, Li W, Liu W Q, et al. Acta Materialia, 2018, 146, 126.
80 Cao H W, Luo X H, Zhan G F, et al. Metallurgical and Materials Tran-sactions A, 2017, 48, 4403.
81 Zhao X Q, Pan T, Wang Q F, et al. Journal of Iron and Steel Research International, 2011, 18(5), 47.
82 Sun C, Liu S L, Misra R D K, et al. Materials Science and Engineering: A, 2018, 711, 484.
83 Couturier L, Descoins M, Deschamps A, et al. Materials & Design, 2016, 107, 416.
84 Xiao Y J, Xiong X Y, Sun G Y, et al. Materials Characterization, 2022, 191, 112184.
85 Takahashi J, Kawakami K, Kobayashi Y. Materials Science and Enginee-ring: A, 2012, 535, 144.
86 Jain D, Isheim D, Seidman D N. Metallurgical and Materials Transactions A, 2017, 48, 3205.
87 Wen Y R, Li Y P, Hirata A, et al. Acta Materialia, 2013, 61(20), 7726.
88 Kobayashi Y, Takahashi J, Kawakami K. Scripta Materialia, 2012, 67(10), 854.
89 Kamikawa N, Abe Y, Miyamoto G, et al. Tetsu-To-Hagane, 2013, 99(5), 352.
90 Li J B, Xiong X Y, Shen Q, et al. Materials Science and Technology, 2020, 36(7), 852.
91 Tian J L, Li Y C, Wang W, et al. Acta Metallurgica Sinica, 2016, 52(12), 1517 (in Chinese).
田家龙, 李永灿, 王威, 等. 金属学报, 2016, 52(12), 1517.
92 Lifshitz I M, Slyozov V V. Journal of Physics and Chemistry of Solids, 1961, 19(1-2), 35.
93 Zhang H L, Sun M Y, Liu Y X, et al. Acta Materialia, 2021, 211, 116878.
94 Kapoor M, Isheim D, Ghosh G, et al. Acta Materialia, 2014, 73, 56.
[1] 张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
[2] 苏允海, 魏祖勇, 张桂清, 张祥稳. 不同补焊次数下ZG06Cr13Ni4Mo的组织演变规律[J]. 材料导报, 2023, 37(16): 22020127-6.
[3] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[4] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[5] 殷丹丹, 常春清, 王岚, 焦子雄. 基于DIC技术分析老化前后温拌胶粉改性沥青混合料的开裂特性[J]. 材料导报, 2021, 35(24): 24088-24094.
[6] 李过, 孙耀宁, 王国建, 代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为[J]. 材料导报, 2021, 35(16): 16160-16165.
[7] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[8] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[9] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed