Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 21040180-5    https://doi.org/10.11896/cldb.21040180
  高分子与聚合物基复合材料 |
竹纸老化的热解特性及其老化程度的量化评价
陈彪1,†, 谭静1,†, 付小航1, 卢郁静1, 朱玥玮1, 黄晶1, 狄雨萌1, 丁延伟2,*
1 中国科学技术大学科技史与科技考古系,合肥 230026
2 中国科学技术大学合肥微尺度物质科学国家研究中心,合肥 230026
Study on Pyrolysis Characteristics of Bamboo Paper After Aging and Quantitative Evaluation of Its Aging Degree
CHEN Biao1,†, TAN Jing1,†, FU Xiaohang1, LU Yujing1, ZHU Yuewei1, HUANG Jing1, DI Yumeng1, DING Yanwei2,*
1 Department of History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei 230026, China
2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026,China
下载:  全 文 ( PDF ) ( 2434KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探讨表征纸张老化特性的新指标,对竹纸进行不同条件的干热老化处理,利用热重法(TG)研究竹纸老化后的热解特性,并测定纸张的抗张强度,计算抗张指数保留率(Ri)。实验结果表明,随老化温度升高,竹纸的TG曲线及DTG曲线中的特征温度依次降低,其热稳定性变差。热解特征温度T0.5随老化程度加剧而不断下降,其差值ΔT0.5可作为评价竹纸老化程度的参数。对不同老化条件下竹纸的ΔT0.5与Ri进行回归分析,结果显示竹纸的ΔT0.5与Ri之间存在指数关系,可建立评价竹纸老化程度的量化模型。以实验所测其他种类竹纸样品的ΔT0.5和Ri通过平均绝对百分比误差和后验差检验来综合验证指数模型的精度,所得结果均符合两种指标对模型高精度拟合等级的划分标准,表明该模型对不同种类竹纸的老化程度评价具有较好的有效性,尤其对珍贵纸张的老化研究具有微损分析的独特优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈彪
谭静
付小航
卢郁静
朱玥玮
黄晶
狄雨萌
丁延伟
关键词:  竹纸  干热老化  热重法  热解性质  老化评价    
Abstract: There are new indicators of paper aging that need to be explored in cultural relics conservation. In this work, based on the accelerated heat aging of bamboo paper, its pyrolysis characteristics after aging were studied via the thermogravimetry, and the retention rate of tensile index (Ri) of bamboo paper was tested. The results show that with rising aging temperatures, the characteristic temperatures of TG curve of bamboo paper as well as DTG curve has gradually reduced in turn, which reflects that the thermal stability of bamboo paper decreased after aging. With the aging degree of bamboo paper aggravated, the temperature of its 50% weight loss (T0.5) has declined. Therefore, the T0.5 can be used as one of the indicators to reflect the aging characteristics of paper, the different value of T0.5T0.5) between bamboo paper before and after aging can be used as the parameter to evaluate its aging degree. The ΔT0.5 and Ri of bamboo paper under different aging conditions were used for regression analysis, it is found that there is an exponential quantitative relationship between ΔT0.5 and Ri, which indicates the evaluation model for the aging degree of bamboo paper can be established. The ΔT0.5 and Ri of other bamboo paper samples tested were used to verify the accuracy of the quantitative model by two methods (Mean Absolute Percentage Error and Posterior-Variance-Test), which indicates the model has high-precision fitting level and can be used to evaluate the aging of bamboo paper with different raw materials and paper-making technologies, especially for studying some precious or small amounts of paper.
Key words:  bamboo paper    heat aging    thermogravimetry    pyrolysis characteristics    aging evaluation
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  O642  
基金资助: 国家自然科学基金(31200455)
通讯作者:  * ywding@ustc.edu.cn   
作者简介:  陈彪,中国科学技术大学科技史与科技考古系副教授、硕士研究生导师。2001年7月于中国科学技术大学高分子科学与工程系获得学士学位;2001年9月—2006年6月,于中国科学技术大学高分子科学与工程系硕博连读,获得博士学位。现主要从事传统手工纸、考古材料方面的研究,发表文章100多篇。
谭静,2017年7月于西北民族大学文物保护技术专业获得学士学位;2017年09月至今,中国科学技术大学科技史与科技考古系硕博连读在读研究生,研究方向为科技考古与文化遗产保护,发表核心文章数篇。
丁延伟, 1999年7月,曲阜师范大学化学系获得学士学位;2002年7月,中国科学技术大学化学物理系获得硕士学位;2009年07月,中国科学技术大学化学物理系获得博士学位。现为中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师、理化科学实验中心副主任、质量负责人、热分析与吸附机组负责人。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,并担任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员。承担国家自然科学基金青年基金、中国科学院仪器功能开发项目、安徽省教学研究项目等多个重大项目,以主要作者发表SCI论文30余篇,获授权专利7项。出版《热分析实验方案设计与曲线解析概论》《热分析基础》《热分析与量热技术》等学术著作。
†共同第一作者
引用本文:    
陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
CHEN Biao, TAN Jing, FU Xiaohang, LU Yujing, ZHU Yuewei, HUANG Jing, DI Yumeng, DING Yanwei. Study on Pyrolysis Characteristics of Bamboo Paper After Aging and Quantitative Evaluation of Its Aging Degree. Materials Reports, 2022, 36(13): 21040180-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040180  或          http://www.mater-rep.com/CN/Y2022/V36/I13/21040180
1 Tian Z L, Zhang M, Ren S S, et al. Sciences of Conservation and Archaeo-logy, 2019,31(1),65 (in Chinese).
田周玲, 张铭, 任珊珊,等. 文物保护与考古科学, 2019,31(1),65.
2 Zhang N, Zheng D Q, He W J, et al. China Pulp & Paper, 2019,38(10),79 (in Chinese).
张诺, 郑冬青, 何伟俊,等. 中国造纸, 2019,38(10),79.
3 Chen B, Tan J, Huang J, et al. Journal of Forestry Engineering, 2021,6(1),121 (in Chinese).
陈彪, 谭静, 黄晶,等. 林业工程学报, 2021,6(1),121.
4 Kim S Y, Kim G S, Choi T H. Journal of Korea TAPPI, 2017,49(3),34.
5 Luo Y B. Studies in Conservation, 2019, 64, 448.
6 Hajji L, Boukir A, Assouika J, et al. Microchemical Journal, 2016,124,646.
7 Calvini P, Gorassini A, Luciano G, et al. Vibrational Spectroscopy, 2006,40,177.
8 Castro K, Princi E, Proietti N, et al. Nuclear Instruments and Methods in Physics Research B, 2011,269,1401.
9 Wang H S, Hou Q X, Cao Z L, et al. China Pulp & Paper, 2007,26(10),36 (in Chinese).
王海松, 侯庆喜, 曹振雷,等. 中国造纸, 2007,26(10),36.
10 Gao D, Zhang S P, Zhang G, et al. China Pulp & Paper,2019,38(4),36 (in Chinese).
高丹, 张水平, 张庚,等. 中国造纸, 2019,38(4),36.
11 Zhang X J, Chen X L, Chen G. Journal of Fudan University (Natural Science),2016,55(6),689 (in Chinese).
张学津, 陈晓琳, 陈刚. 复旦学报(自然科学版), 2016,55(6),689.
12 Xing H P. Journal of Shaanxi Normal University (Natural Science Edition), 2004,32(1),227 (in Chinese).
邢惠萍.陕西师范大学学报(自然科学版), 2004,32(1),227.
13 Furushima Y, Ota R, Ohkawa T. Thermochimica Acta, 2020,694,178804.
14 Piccirillo G, Moreira-Santos M, Valega M, et al. Applied Catalysis B-Environmental, 2021,282,119556.
15 Zhong Y, Wang M, Yuan J S. Materials Reports B:Research Papers,2020,34(11),22015(in Chinese).
钟远, 王敏, 袁俊生.材料导报:研究篇,2020,34(11), 22015.
16 Wang T, Rong H, Chen S, et al. Journal of Hazardous Materials, 2021,403,123911.
17 Chen Q F, Liu Y Y, Chen G X. Cellulose, 2019, 26(4),2425.
18 Chen G, Liu Y S, Wen A, et al. Journal of South China University of Technology (Natural Science Edition),2012,40(1),19 (in Chinese).
陈港, 刘玉莎, 文艾,等. 华南理工大学学报(自然科学版), 2012,40(1),19.
19 Zhao G T. Study on deacidification of paper documents by ethylene oxide. Ph.D. Thesis, Shaanxi Normal University, China,2017(in Chinese).
赵光涛.环氧乙烷对纸质文献的整体脱酸研究.博士学位论文,陕西师范大学,2017.
20 Liu Q, Wang S R, Wang K G, et al. Acta Physico-Chimica Sinica, 2008,24(11),1957 (in Chinese).
刘倩, 王树荣, 王凯歌,等. 物理化学学报, 2008,24(11),1957.
21 Grønli M G, Várhegyi G, Blasi C D. Industrial & Engineering Chemistry Research, 2002, 41(17),4201.
22 Li Y H, Liu H B, Tao J S, et al. China Pulp & Paper, 2014,33(1),65 (in Chinese).
李远华, 刘焕彬, 陶劲松,等. 中国造纸, 2014,33(1),65.
23 Chen L, Huang X X. Archives Science Bulletin, 2018(1),97(in Chinese).
陈玲, 黄晓霞.档案学通讯, 2018(1),97.
24 Tan J, Lu Y J, Gu P L, et al. Journal of Forestry Engineering, 2020,5(5),103(in Chinese).
谭静, 卢郁静, 顾培玲,等. 林业工程学报, 2020,5(5),103.
25 Cao J L, Xiao L C, Cheng T. Mathematical modeling and mathematical experiment, Xidian University Press, China, 2014(in Chinese).
曹建莉, 肖留超, 程涛. 数学建模与数学实验, 西安电子科技大学出版社, 2014.
[1] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed