Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6180-6185    https://doi.org/10.11896/cldb.19010216
  高分子与聚合物基复合材料 |
基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响
何正文, 田红, 黄章俊, 胡章茂, 刘威
长沙理工大学能源与动力工程学院,长沙 410015
Influence of Pyrolysis Temperature on the Distribution of Pyrolysis Products of Lignin Dimer Based on Quantum Chemistry Theory
HE Zhengwen, TIAN Hong, HUANG Zhangjun, HU Zhangmao, LIU Wei
School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410015, China
下载:  全 文 ( PDF ) ( 3393KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究热解温度对木质素热解产物分布的影响,本工作采用密度泛函方法B3LYP/6-31G(d,p),以β-O-4型木质素二聚体为模化物,在不同热解温度下,对该模化物两种主要热解反应途径中的反应物、产物、中间体和过渡态进行了能量梯度全优化以及振动频率计算。根据计算结果中的动力学和热力学参数的变化规律,分析了热解温度对热解产物分布的影响。计算结果表明:Cβ-O键均裂的反应是主要的反应路径,当热解温度低于700K时,主要产物为化合物4、化合物7、化合物15以及小分子甲醛和乙烯,化合物10、化合物11、化合物13、化合物14和CO在产物中的含量所占比例相对较少;当热解温度高于700K时,产物中化合物15和乙烯继续占据主要产物的地位,且含量持续升高,同时,化合物7和甲醛的含量所占比例减少,而化合物10、化合物11和CO含量增多,成为主要产物;Cα-Cβ键均裂的反应是主要的竞争反应,随热解温度升高,其主要生成物化合物4和乙醛含量持续升高,而化合物25和甲醛在产物中所占比例变化不大,化合物20和CO的比例则明显减少。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何正文
田红
黄章俊
胡章茂
刘威
关键词:  木质素  热解温度  热解产物分布  密度泛函理论    
Abstract: In order to explore the influence of pyrolysis temperature on the distribution of pyrolysis products of lignin, the theoretical calculations of two main pyrolysis reactions in the pyrolysis process of β-O-4 lignin dimer were carried out for each step at different pyrolysis temperatures by density functional theory B3LYP/6-31G (d,p). The energy gradients of reactants, products, intermediates and transition states for each reaction pathway were optimized, and vibration frequencies of which were calculated at different temperatures. The influence of pyrolysis temperature on the distribution of pyrolysis products was analyzed based on the variation of kinetics and thermodynamics parameters. The calculation results showed that the reaction after the cleavage of Cβ-O bond was the main reaction. When the pyrolysis temperature was below 700 K, the main products of the reaction were compounds 4, 7, 15 and small molecules including formaldehyde and ethylene, while the proportions of compounds 10, 11, 13, 14 and CO in the product were relatively low. When the pyrolysis temperature was higher than 700 K, the proportions of compound 15 and ethylene increased continuously, which were still the main products. At the same time, the proportions of compound 7 and formaldehyde decreased, while the proportions of compounds 10, 11 and CO increased. The cleavage reaction of Cα-Cβ bond was the main competing reaction. With the increasing pyrolysis temperature, the proportions of the main products including compound 4 and acetaldehyde increased continuously, the proportions of chemical 20 and CO decreased obviously, and the proportions of compound 25 and formaldehyde in the products changed a little.
Key words:  lignin    pyrolysis temperature    distribution of pyrolysis products    density functional theory
                    发布日期:  2020-03-12
ZTFLH:  TK6  
  O642  
基金资助: 国家自然科学青年基金(51706022);湖南省自然科学基金青年基金(2018JJ3545);湖南省自然科学基金(2018JJ2442)
作者简介:  何正文,2017年7月毕业于兰州交通大学,获工学学士学位。2018年9月至今在长沙理工大学攻读工学硕士学位,主要从事生物质热解及气化领域的研究;田红,长沙理工大学副教授,硕士研究生导师,自2007年博士毕业于东北大学至今,在长沙理工大学能源与动力工程学院从事教学与科研工作。在国内外学术期刊上发表论文50余篇,申请并授权发明专利2项,其研究方向包括生物质/煤热解、气化与燃烧。先后主持国家自然科学基金项目2项和省部级项目5项,作为主研人员参与完成国家自然科学基金4项,省部级科研项目10余项,获湖南省科学技术奖二等奖1项。获全国大学生节能减排社会实践与科技竞赛三等奖 (指导老师)1项,已培养硕士5名,本科生50余名。
引用本文:    
何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
HE Zhengwen, TIAN Hong, HUANG Zhangjun, HU Zhangmao, LIU Wei. Influence of Pyrolysis Temperature on the Distribution of Pyrolysis Products of Lignin Dimer Based on Quantum Chemistry Theory. Materials Reports, 2020, 34(6): 6180-6185.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010216  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6180
1 Roberto G, Consuelo, Antonio G L, et al. Fuel, 2017, 195, 182.
2 Ragauskas A J, Beckham G T, Biddy M J, et al. Science, 2014, 344, 709.
3 Tian J, Yang Y Q, Song J L.Journal of Cellulose Science and Technology, 2018, 26 (4), 76 (in Chinese).
田静, 杨益琴, 宋君龙. 纤维素科学与技术, 2018, 26 (4), 76.
4 Juhyon Kang, Sibel Irmak, Mark Wilkins.Renewable Energy,2019,135, 951.
5 Wang S, Ru B, Lin H, et al. Bioresource Technology, 2015, 182, 120.
6 Gu J, Liu B, Zhang Q S. Biomass Chemical Engineering, 2015, 49 (4), 7 (in Chinese).
顾洁, 刘斌, 张齐生. 生物质化学工程, 2015, 49 (4), 7.
7 Bai T T, Ren X Y, Zhang Z T. China Forest Products Industry, 2014,41 (5), 7 (in Chinese).
白甜甜, 任学勇, 张忠涛. 林产工业, 2014,41 (5), 7.
8 Li J L, Qu C T, Zhu S D. Materials Review A: Review Papers, 2018,32 (9),3023 (in Chinese).
李金灵, 屈撑囤, 朱世东.材料导报:综述篇, 2018, 32 (9), 3023.
9 Tian H, Yao C, Yin Y S, et al. Materials Review B: Research Papers, 2016, 30 (11), 152 (in Chinese).
田红, 姚灿, 尹艳山, 等.材料导报:研究篇, 2016, 30 (11), 152.
10 Jiang G, Nowakowski D J, Bridgwater A V. Energy and Fuels, 2010, 24 (8), 4470.
11 Custodis V B, Bahrle C, Vogel F,et al. Journal of Analytical and Applied Pyrolysis, 2015, 115, 214.
12 Lou R, Wu S, Yu G L. Journal of Analytical and Applied Pyrolysis, 2015, 111, 27.
13 Zhang J J, Jiang X Y, Ye X N, et al. Thermal Analysis and Calorimetry, 2016, 123 (1), 501.
14 Huang J B, Wu S B, Lei M, et al. Journal of Fule Chemistry and Technology, 2015, 43 (11), 1334 (in Chinese).
黄金保, 武书彬, 雷鸣, 等.燃料化学学报, 2015, 43 (11), 1334.
15 Tao K, Strezov V, Evans T J. Renewable and Sustainable Energy Reviews, 2016, 57, 1126.
16 Dhyani V, Thallada B. Renewable Energy, 2018, 129, 695.
17 Burhenne L, Marco D, Thomas A. Fuel, 2013, 107,836.
18 Park S W, Jang C H. Energy, 2012, 39 (1), 187.
19 Tan Y, Ma C F.Biomass Chemical Engineering, 2018, 52 (2), 35 (in Chinese).
谭扬, 马春富. 生物质化学工程,2018,52 (2),35.
20 Che D Y, Sun Y X, Sun B Z.Chinese Society for Electrical Engineering, 2015, 35 (24), 6439 (in Chinese).
车德勇, 孙艳雪, 孙佰仲.中国电机工程学报, 2015, 35 (24), 6439.
21 Nakamura T, Kawamoto H, Saka S. Analytical and Applied Pyrolysis, 2008, 81, 173.
22 Beste A, Buchanan III A C. The Journal of Organic Chemistry, 2009, 74 (7), 2837.
23 Huang J, Liu C, Wu D, et al. Analytical and Applied Pyrolysis, 2014,109, 98.
24 Wang G Q, Li N, Shen J L. Journal of Capital Normal University, 2007, 28 (3), 27 (in Chinese).
王光琴, 李宁, 沈京玲. 首都师范大学学报, 2007, 28 (3), 27.
25 Fan K N. Physical chemistry, Higher Education Press, China, 2005 (in Chinese).
范康年. 物理化学, 高等教育出版社,2005.
[1] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[2] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[3] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[4] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[5] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[6] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[7] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[8] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[9] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[10] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[11] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[12] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[13] 赵兴华, 刘维慧, 李春, 元光. NO3为配体的超卤素/飙卤素的理论研究[J]. 材料导报, 2018, 32(20): 3531-3534.
[14] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[15] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed